PORTALE DELLA DIDATTICA

Ricerca CERCA
  KEYWORD

Camera identification in the presence of computational photography

Riferimenti TIZIANO BIANCHI

Gruppi di ricerca Image Processing Lab (IPL)

Tipo tesi RESEARCH / EXPERIMENTAL

Descrizione Every camera sensor leaves imperceptible traces on the acquired images. One of these traces, due to slight differences in sensitivity of sensor pixels and named Photo Response Non-Uniformity (PRNU), is a well established technique for linking an image to the sensor that acquired it. Unfortunately, in modern smartphones those traces can be significantly altered by the software pipeline leading to image formation, known as computational photography. Sophisticated algorithms are routinely used to insert customized filters or apply HDR effects. The effect is that the standard PRNU test can give a large number of false positives, since PRNU traces of different sensors tend to look more similar after they are processed by the same computational photography algorithm.

The aim of this thesis is to develop an innovative test for camera identification that is not affected by computational photography, possibly exploiting recent advances on PRNU estimation based on machine learning.

References
Iuliani, Massimo et al. “A leak in PRNU based source identification? Questioning fingerprint uniqueness.” https://arxiv.org/abs/2009.04878

Conoscenze richieste Signal processing skills, Matlab and/or Python programming. Background on neural networks is a plus.


Scadenza validita proposta 05/10/2024      PROPONI LA TUA CANDIDATURA