PORTALE DELLA DIDATTICA

Ricerca CERCA
  KEYWORD

Implementazione di un sistema di riconoscimento dell'attenzione dell'utente basato su reti neurali convoluzionali in Android

Parole chiave ANDROID, EFFICIENZA ENERGETICA, RETI NEURALI ARTIFICIALI

Riferimenti DANIELE JAHIER PAGLIARI, MASSIMO PONCINO

Tipo tesi IMPLEMENTATIVA, RICERCA

Descrizione Fin dalla loro introduzione, gli smartphone stanno diventando sempre piu' potenti e avnzati. Ci˛ ha per˛ un impatto significativo sui tempi di autonomia. Attualmente, il "power management" sugli smartphone Ŕ basato principalmente su semplici tecniche statiche (quali timeout) che non tengono conto del contesto di utilizzo, tranne per alcune casistiche base (come spegnere lo schermo quando il dispositivo si trova in tasca).
Potenzialmente, il grande numero di sensori presenti su uno smartphone moderno consente l'implementazione di tecniche molto pi¨ avanzate di gestione dei consumi basate sul contesto di utilizzo.

L'obiettivo di questa tesi Ŕ quello di valutare l'implementabilitÓ di una di queste tecniche avanzate in ambiente Android. Nello specifico, la tecnica Ŕ basata su un classificatore "deep", in grado di determinare se il dispositivo Ŕ in uso o meno usando le letture di una serie di sensori a basso consumo, e di conseguenza effettuare azioni per la riduzione dei consumi (come spegnere lo schermo o cambiare il "Doze state").

Una prima versione del classificatore Ŕ giÓ stata sviluppata e testata in Python (PyTorch) durante un progetto precedente, utilizzando dati raccolti da diversi smartphone. Di conseguenza, la prima parte della tesi sarÓ pi¨ implementativa, e si concentrerÓ sul porting di questo classificatore su un servizio Android eseguito sul dispositivo stesso, e sulla valutazione dell'impatto in termini di tempo di esecuzione e consumo di potenza.

Successivamente, lo studente lavorerÓ sul miglioramento del classificatore, sia in termini di miglioramento dell' accuratezza sia di riduzione della complessitÓ computazionale. Questa seconda parte della tesi sarÓ quindi pi¨ di ricerca e potrebbe portare ad una pubblicazione scientifica.

Conoscenze richieste I candidati devono avere buone abilitÓ di programmazione ed essere interessati al machine/deep learning ed alle sue applicazioni.
Avere esperienza con Android e/o Python oppure avere giÓ delle nozioni base di machine/deep learning Ŕ sicuramente preferibile ma non necessario.


Scadenza validita proposta 24/10/2020      PROPONI LA TUA CANDIDATURA




© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti