PORTALE DELLA DIDATTICA

Ricerca CERCA
  KEYWORD

Area Ingegneria

Analisi mediante machine learning delle caratteristiche di forma degli idrogrammi di piena a supporto della progettazione e verifica delle casse di espansione fluviali

Riferimenti PIERLUIGI CLAPS, DANIELE GANORA

Riferimenti esterni GIULIA EVANGELISTA

Gruppi di ricerca IDROLOGIA

Tipo tesi NUMERICA E SPERIMENTALE

Descrizione Il lavoro si basa sull'applicazione di tecniche di Intelligenza Artificiale (pi¨ precisamente di Machine Learning) per la massimizzazione di un'informazione scarsamente disponibile, ovvero la forma tendenziale delle onde di piena provenienti da un dato bacino idrografico. La recente alluvione dell'Emilia Romagna (2023) ha infatti mostrato quanto sia critico studiare bene le onde di piena prima di progettare vasche di espansione, che possono rivelarsi insufficienti per durate di precipitazione molto rilevanti.
In un recente lavoro: https://doi.org/10.1080/02626667.2022.2153051 si Ŕ offerta, per la prima volta in Italia, una metodologia per stimare questa forma da caratteristiche geomorfologiche dei bacini. Per ampliare l'ambito di questa ricerca ed estenderla ad altri contesti italiani ed internazionali, si vorrebbe indagare le forme degli idrogrammi con sistemi non parametrici, tipo quelli utilizzati in questo lavoro: https://www.researchgate.net/publication/281455079_Monthly_Runoff_Regime_Regionalization_Through_Dissimilarity-Based_Methods
ma sperimentando strumenti tipici del Machine Learning, quali ad esempio il metodo del Random Forest.
Scopo finale del lavoro Ŕ indicare l'entitÓ dell'informazione locale necessaria a prevedere le forme piu' probabili di onde di piena in uscita da un bacino idrografico per supportare efficacemente la progettazione di interventi di mitigazione.

Conoscenze richieste Elementi base di programmazione. CapacitÓ di organizzare dati mediante sistemi di data analysis quali Matlab, R o simili


Scadenza validita proposta 15/08/2024      PROPONI LA TUA CANDIDATURA




© Politecnico di Torino
Corso Duca degli Abruzzi, 24 - 10129 Torino, ITALY
Contatti