La laurea magistrale in Communications Engineering insegna come progettare e operare un sistema avanzato di telecomunicazioni, basato su canali radio ed ottici, nel contesto delle comunicazioni satellitari, le reti ottiche, le reti di calcolatori e le reti radio. Lo studente impara come sviluppare e utilizzare strumenti avanzati, come simulatori di sistemi di comunicazioni e il machine learning, e come processare segnali, immagini e video.
Come peculiarità del corso di studi, viene utilizzato in modo estensivo un approccio di insegnamento basato su progetti (project-based learning), in aggiunta ai laboratori e alle esercitazioni presenti nei diversi corsi. ORGANIZZAZIONE DEL CORSO Il corso viene completamente erogato in inglese e dura 2 anni. Il primo anno è principalmente focalizzato a fornire le competenze su metodologie avanzate (come il machine learning, il processamento dei segnali, la teoria dell’informazione, i campi elettromagnetici) per studiare e controllare sistemi di comunicazione, partendo dai canali ottici e radio fino a reti di telecomunicazione estese e complesse. Nel secondo anno vengono offerte numerose opportunità di adattare il piano di studi ai propri interessi e attitudini, coprendo tutte le attuali e più promettenti tecnologie di comunicazione. Alcune delle abilità che verranno acquisite sono le seguenti: programmazione in Python e Matlab, programmazione software di sistemi di comunicazione, gestione e controllo di reti, simulazione di sistemi di comunicazione e di reti, misure di rete, trasmissioni ottiche e radio, e infine il deep learning, l’apprendimento e l’inferenza tramite reti neurali. METODOLOGIA DIDATTICA Ben due semestri comprendono i corsi di progetto, uno relativo alle comunicazioni definite via software, e l’altro relativo ai sistemi di comunicazione e Internet-of-Things (IoT). Molti corsi includono attività di laboratorio in laboratori di ricerca, con un approccio di insegnamento pratico (“learning-by-doing”). Avanzati simulatori e “digital-twins” di sistemi di comunicazione facilitano lo svolgimento delle attività pratiche. Oltre 300 ore sono destinate ad attività pratiche relative a comunicazioni radio e ottiche, reti e processamento dei segnali. Sommate alle 300 ore di attività di tesi, risulta che circa metà delle ore della laurea sono destinate ad attività pratiche. Inoltre, il corso è caratterizzato da una forte connessione con le aziende, grazie alle diverse opportunità di tesi e intership in azienda, e ai seminari aziendali. STUDIARE ALL'ESTERO e DOPPIA LAUREA Grazie ai programmi di mobilità, è possibile studiare all’estero per un semestre. Invece, nel caso dei seguenti programmi di doppia laurea, gli studenti devono spendere un semestre addizionale nell’università straniera (cioè, 2 semestri al Politecnico di Torino e 3 semestri nell’università straniera). • EURECOM Sophia-Antipolis (Francia) • PARISTECH Paris (Francia) • KTH Royal Institute of Technology in Stockholm (Svezia) • University of Illinois at Chicago (USA) - TOP-UIC project OPPORTUNITÀ DI LAVORO Salari più alti, occupazione più alta: le statistiche ufficiali di Almalaurea mostrano che il 90% dei nostri laureati sono assunti entro il primo anno dalla laurea, 100% entro 5 anni, e che la retribuzione netta mensile media raggiunge 2042 EU in cinque anni, cioè almeno 10% in più rispetto al valore medio degli studenti da altri corsi di laurea del Politecnico. Gli scenari di occupazione nei settori pubblici e privati riguardano: - progetto, sviluppo, gestione e operatività dei sistemi di telecomunicazione e delle reti - progetto e sviluppo di servizi telematici - marketing in ambito ICT - ricerca - consulenza Le opportunità successive di formazione sono i corsi di dottorato di ricerca e i Master di III livello. |
I laureati nei corsi di laurea magistrale della classe devono:
- conoscere approfonditamente gli aspetti teorico-scientifici della matematica e delle altre scienze di base ed essere capaci di utilizzare tale conoscenza per interpretare e descrivere i problemi dell'ingegneria complessi o che richiedono un approccio interdisciplinare; - conoscere approfonditamente gli aspetti teorico-scientifici dell'ingegneria, sia in generale sia in modo approfondito relativamente a quelli dell'ingegneria delle telecomunicazioni, nella quale sono capaci di identificare, formulare e risolvere, anche in modo innovativo, problemi complessi o che richiedono un approccio interdisciplinare; - essere capaci di ideare, pianificare, progettare e gestire sistemi, processi e servizi complessi e/o innovativi; - essere capaci di progettare e gestire esperimenti di elevata complessità; - essere dotati di conoscenze di contesto e di capacità; - essere in grado di utilizzare fluentemente, in forma scritta e orale, la lingua inglese, con riferimento anche ai lessici disciplinari. L'ammissione ai corsi di laurea magistrale della classe richiede il possesso di requisiti curriculari che prevedano, comunque, un'adeguata padronanza di metodi e contenuti scientifici generali nelle discipline scientifiche di base e nelle discipline dell'ingegneria, propedeutiche a quelle caratterizzanti previste nell'ordinamento della presente classe di laurea magistrale. I corsi di laurea magistrale della classe devono inoltre culminare in una importante attività di progettazione, che si concluda con un elaborato che dimostri la padronanza degli argomenti, la capacità di operare in modo autonomo e un buon livello di capacità di comunicazione. I principali sbocchi occupazionali previsti dai corsi di laurea magistrale della classe sono quelli dell'innovazione e dello sviluppo della produzione, della progettazione avanzata, della pianificazione e della programmazione, della gestione di sistemi complessi, sia nella libera professione sia nelle imprese manifatturiere o di servizi che nelle amministrazioni pubbliche. I laureati magistrale potranno trovare occupazione presso imprese di progettazione, produzione ed esercizio di apparati, sistemi e infrastrutture riguardanti l'acquisizione e il trasporto delle informazioni e la loro utilizzazione in applicazioni telematiche; imprese pubbliche e private di servizi di telecomunicazione e telerilevamento terrestri o spaziali; enti di controllo del traffico aereo, terrestre e navale. L'Ateneo organizza, in accordo con enti pubblici e privati, stages e tirocini. |
Attività formative dell'ordinamento didattico
La presente tabella delle attività formative riporta l'indicazione di tutti i SSD affini e integrativi - e non solo dell'intervallo in termini di CFU ad esse attribuito - dettaglio che verrà riportato nel regolamento didattico del CdS
|
Attività caratterizzanti
Ambito disciplinare | Settore | Cfu | |
---|---|---|---|
Min | Max | ||
Ingegneria delle telecomunicazioni |
ING-INF/02 - CAMPI ELETTROMAGNETICI
ING-INF/03 - TELECOMUNICAZIONI |
45 | 64 |
Attività affini o integrative
Ambito disciplinare | Settore | Cfu | |
---|---|---|---|
Min | Max | ||
Attività formative affini o integrative |
ING-INF/01 - ELETTRONICA
ING-INF/03 - TELECOMUNICAZIONI ING-INF/05 - SISTEMI DI ELABORAZIONE DELLE INFORMAZIONI MAT/05 - ANALISI MATEMATICA MAT/06 - PROBABILITÀ E STATISTICA MATEMATICA |
12 | 20 |
Altre attività
Ambito disciplinare | Settore | Cfu | |
---|---|---|---|
Min | Max | ||
A scelta dello studente | A scelta dello studente | 12 | 18 |
Per prova finale e conoscenza della lingua straniera | Per la prova finale | 18 | 30 |
Altre attività (art. 10) | Abilità informatiche e telematiche | 6 | 8 |
Altre attività (art. 10) | Altre conoscenze utili per l'inserimento nel mondo del lavoro | - | - |
Altre attività (art. 10) | Tirocini formativi e di orientamento | - | 12 |
Altre attività (art. 10) | Ulteriori conoscenze linguistiche | - | 6 |
Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali | Per stages e tirocini presso imprese, enti pubblici o privati, ordini professionali | - | - |