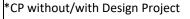
Unite! VECP on Architecture Engineering

is a Virtual Exchange Credit Program (VECP) in <u>Unite! – the University Network for Innovation, Technology and Engineering</u>. Students in Architecture and civil engineering from Aalto-yliopisto, Politecnico di Torino and Technical University of Darmstadt can select one or more online courses offered by the other universities and gain credits.

Level: Master of Science in Building Engineering/Laurea Magistrale in Ingegneria Edile


Period: starting fall/winter 2021
 Language of instruction: English
 Mode of Instruction: Virtual

Topics: Architecture, Engineering, Digital Design and Construction, Sustainability, Advanced Manufacturing, Energy Efficiency, Parametric Design, Algorithmic Design, Structural Design.

Summary of Courses offered

When reading the course information below, please pay attention to the different academic calendars, day and hour of the course and the course requirements. If you have questions on whether the course fits your study plan, please contact your professors or an academic advisor at your home institution.

University	Lecturer	Course Name	Credit s	Time Frame	Application possible	UNITE! Student Numbers
Technische Universität Darmstadt (Germany)	Oliver Tessmann (DDU)	Computational Design Basics	5	Summer (April to July) and Winter Semester (October to February)	May 9	7 from each partner/14 UNITE!
		Parametric Design and Construction	3/5*	Summer (April to July)	No	2 from each partner/4 UNITE!
	Ulrich Knaack (ISM+D)	Facade Technologies 1	6	Summer (April to July) and Winter Semester (October to February)	May 9	7 from each partner/14 UNITE!
	Jens Schneider	Spatial Structures	3/6*	Summer (April to July)	No	5 from each partner/10 UNITE!
Aalto University (Finland)	Toni Kotnik	Parametric Design	3	January -February / Period 3 (6 weeks)	No	2 from each partner/ 4 UNITE!
	Toni Kotnik	Algorithmic Design	3/6*	March -May /Period 4 and 5 (12 weeks)	No	2 from each partner/ 4 UNITE!
Politecnico di Torino (Italy)	Anna Osello	Knowledge of the built heritage in the era of the climate changes	18	Winter Semester Oct to Jan	May 9	3 from each partner/ 6 UNITE!
	Vincenzo Corrado	Energy performance design and indoor environmental quality	8	Year-long! Winter AND Summer Semester (Oct to Jan and March to June)	May 9	3 from each partner/ 6 UNITE!

Application information

Students apply at the home institution until May 9th 2021 for courses in fall 2021/winter semester 2021/22.

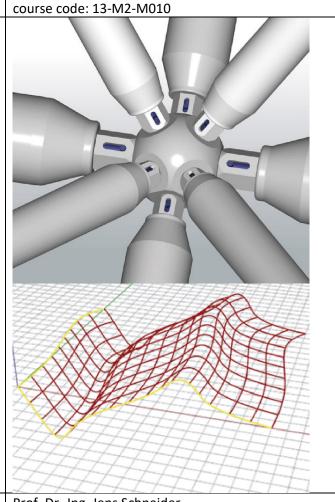
Read the <u>Call for selection</u> for further information.

The applications will be processed at the home institution and the students will be nominated to the host institution. You will receive information about the second application to be filled-in at the host institution in late May or June. After successful application at the host institution, you will be enrolled at the host institution. You will have to register for the selected courses before the semester starts.

Detailed List of Courses offered from 2021/2022

Computational Design	5 CP		
Basics:	course code: 15-01-0354/ 15-02-6466		
The course introduces			
students to the tools and			
methods of computational			
design. Students will be introduced to 3d modeling			
techniques with			
Rhinoceros, parametric			
and algorithmic design			
with Grasshopper, and			
scripting with Python.			
Lecturer	Prof. Dr. Ing. Oliver Tessmann		
Course dates (TBC)	Prof. Dr Ing. Oliver Tessmann		
	Mid. October to Mid. February Winter/ Mid. April- Mid. July Summer semester		
Times (TBC)	Fri, 12.30 – 14.30		
Delivery Method	Moodle		
Language	English and German		
Contact and Weblink	tessmann@dg.tu-darmstadt.de		
https://www.architektur.tu-			
darmstadt.de/media/archite	ektur/2019 studieren/downloads 5/fb 15 allgemein/semesterbooklet/vergang		
enes semester/Semesterbo	oklet WS19-20.pdf		

Parametric Design and	3 or 5 CP
Construction:	course code: 15-02-6467
The Parametric Design and	
Construction course consists of a	
series of lecture, tutorials and	
design exercises. Parametric	
Design unlocks novel design	
possibilities and enables	
interdisciplinary collaboration of	
architects and structural	"MANA " MA PR
engineers. These tools and	
methods will be applied and	
explored for the design of	
lightweight spatial structures. In	
this course participants will learn	
about space frame structures	
and their properties through	
examples from practice and a	
series of small design exercises.	
3D modelling, parametric and	
structural design calculations will	
be conducted in Rhino,	
Grasshopper and Karamba.	
The course is linked to the	
Spatial Structures in the TU Da	
Engineering department.	
Architects and engineers will	
collaborate in interdisciplinary	
design teams. The exam consists	
of one colloquium and three	
small design exercises.	
Lecturer	Prof. Dr Ing. Oliver Tessmann
Course dates (TBC)	Mid. April to Mid. July Summer semester only
Times (TBC)	Monday, 14.30 – 18.00
Delivery Method	TU ID access to Moodle content/ TUCaN or direct email
Language	English and German
Contact and Weblink	tessmann@dg.tu-darmstadt.de
https://www.architektur.tu-	
darmstadt.de/media/architektur/2	2019 studieren/downloads 5/fb 15 allgemein/semesterbooklet/Semest
erbooklet SoSe 2021.pdf	


Spatial Structures:

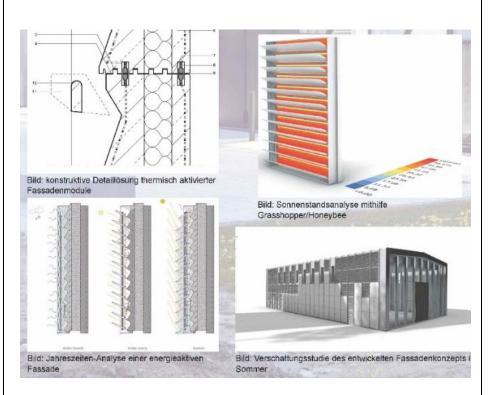
3/6 CP

The Spatial Structures course consists of a series of lecture, tutorials and design exercises that revolve around the design, analysis and fabrication of spatial structures. Lightweight spatial, vector-active structure allow for large spanning constructions. Parametric design and digital fabrication allow for ever more complex geometries. The lecture address basic characteristics of spatial structures and presents contemporary and historical examples from practice. The course is held as an interdisciplinary event in cooperation with the department Digital Design Unit (DDU) of the Department of Architecture.

In this course participants will learn about space frame structures and their properties through examples from practice and a series of small design exercises. 3D modelling, parametric and structural design calculations will be conducted in Rhino, Grasshopper and Karamba.

The exam consists of four graded home exercises including the design of a spatial structure and a colloquium.

Lecturer	Prof. DrIng. Jens Schneider	
Course dates (TBC)	30 th April to 10 th July Summer semester only	
Times (TBC)	Monday, 14.30 – 18.00	
Delivery Method	Moodle content/ TUCaN or direct email	
Language	English and German	
Contact and Weblink	schneider@ismd.tu-darmstadt.de	
https://www.ismd.tu-darmstadt.de/studium und lehre ismd/studierende ismd/master vorlesungen ismd/index.en.jsp		



Façade Technologies 1:

6 CP

course code: 13-M4-M002

In view of the national and international climate targets, energy-efficient and energy-flexible facades play an increasingly important role. One current topic is "energy-active facades", which maximise the use of regenerative environmental heat for room air conditioning, while minimising the use of fossil fuels and complex heating and cooling technology. In addition to the lecture, a workshop will be held in which the students will develop a facade mockup which provides for thermal activation on both the outside and inside of the facade in order to absorb heat energy, store it temporarily and release it again at a suitable time. The design, construction and energy performance of the facade system are evaluated. As a tool for the design of the energy-active, inhomogeneous component in COVID-19 teaching, the participants use CAD program and a multiphysics tool for the analysis of heat storage capacity and transfer

transier.	
Lecturer	Prof. DrIng. Ulrich Knaack
Course dates (TBC)	1 st October to 18 th February Winter/ 30 th April to 10 th July Summer semester
Times (TBC)	Wed. 13:30 – 15:00
Delivery Method	Zoom and Direct Email
Language	English and German
Contact and Weblink	knaack@ismd.tu-darmstadt.de
https://www.ismd.tu-darmstadt.de/studium_und_lehre_ismd/studierende_ismd/master_vorlesungen_ismd/index.en.jsp	

Parametric Design:	3 CP
	course code: ARK-E2515
The course is an introduction into fundamental concepts of parametric design thinking in architecture and landscape architecture using Grasshopper (Rhinoceros plug- in). The course covers basics of geometry of curves and surfaces, NURBS-geometry and mesh geometry as well as data handling. It is taught as intense oneweek long workshop at the beginning of the summer teaching period. Basic knowledge of parametric design thinking, the transformation of concepts into geometric operations and the implementation of these operations in a graphic scripting editor. Requires: Knowledge of Rhinoceros (basic knowledge NURBS curves surfaces).	
Lecturer	Prof Dr Toni Kotnik
Course dates (TBC)	January -February / Period 3 (6 weeks)
Times (TBC)	Tuesday 09.15-12.00
Delivery Method	Moodle
Language	English
Contact and Weblink	toni.kotnik@aalto.fi
https://oodi.aalto.fi/a/opintjakstie	d.jsp?html=1&kieli=6&Tunniste=ARK-E2515&Ajankohta=12-01-2021

Algorithmic Design: 3/6 CP course code: ARK-E2515 The course deals with methods of algorithmic design applied to the field of architecture, PANK-YOU AMELING landscape and interior architecture, construction, as well as in the broad fields of industrial and product design. Although many architects still use computers much like they used analogue drawing boards, intrinsic capabilities of computers allow them to formalize their designs through code. This approach also captures and exploits the inherent contemporary condition of creative practices when designs become data, it becomes possible to create what was previously undrawable. Require: Basic knowledge of algorithmic design with ability to write and execute own Python scripts as well as formulate design problems in code. Prof Dr Toni Kotnik Lecturer Course dates (TBC) March -May /Period 4 and 5 (12 weeks) Spring Times (TBC) Tuesday 09.15-12.00 **Delivery Method** Moodle Language English Contact and Weblink toni.kotnik@aalto.fi https://oodi.aalto.fi/a/opintjakstied.jsp?html=1&kieli=6&Tunniste=ARK-E2513&Ajankohta=02-03-2021&Kieli=6

Knowledge of the built heritage 18 CP in the era of the climate course code: 01UWENB changes: The course, carried out in the form of an interdisciplinary laboratory, aims to set the methodological elements of the entire course of studies in Green Building, providing innovative tools and methods for the integration and critical interpretation of carelessness maintenance reconstruction heterogeneous data functional to the design, starting from the What is time?
If nobody asks me, I know.
If I want to explain it to those who
ask me, I don't know anymore.
[Agostino d'Ippona, 354 – 430] time creation of a digital model on the building scale (the Digital Twin of the Green Building). conservation trasformation The theoretical concepts are In every age the building is affected by the evolution of man, society and his needs ... applied to a real case study shared by all the courses of the first year of the master's degree and refers to a building characterized by a constructive and formal identity that make it peculiar and representative in the context of the international heritage. Prof. Dr. Anna Osello Lecturer 27th September to 15th January Course dates (TBC) Times (TBC) Moodle and Zoom with Proprietary S/W tools **Delivery Method** Language **English**

anna.osello@polito.it

https://didattica.polito.it/portal/pls/portal/gap.pkg_guide.viewGap?p_cod_ins=01UWENB&p_a acc=2021&p_header=S&p_lang=IT_

8

Contact and Weblink

Energy performance	8 CP	
design and indoor	course code: 01UUVNB	
environmental quality:		
The course is aimed at		
providing the basic		
knowledge and the		
design skills in the field		
of the thermal	Indoor	
behaviour and energy	environmental quality	
performance of		
buildings. Particular	Technical	
attention will be put on	building systems	
the evaluation of the	E 200 Specific	
indoor environmental	Technical pullding systems Energy and environmental legislation	
requirements (thermal	July July July July July July July July	
comfort, indoor air	Energy and	
quality), on the thermal	environmental legislation	
performance of the	Legislation legislation	
building envelope	doop	
components, of the	as a second	
analysis of the built	الما الما الما الما الما الما الما الما	
environment, on the	Advanced building skins	
design of technical		
building systems, and	Energy	
on the assessment of	management	
building energy	and automation	
performance.	au unitation	
The course is organized		
in lectures, numerical		
exercises and		
experimental exercises.		
Lecturer (TRC)	Prof. Vincenzo Corrado	
Course dates (TBC)	Yearly course : from 27 th September to 15 th January in the Fall semester AND from	
T' (TDC)	1 st March to 11 th June in the Spring semester	
Times (TBC)	Mary Harris 17 and 11 Brown in the COMP.	
Delivery Method	Moodle and Zoom with Proprietary S/W tools	
Language	English	
Contact and Weblink	vincenzo.corrado@polito.it	
nttps://didattica.polito.it/pls/j	portal30/gap.pkg_guide.viewGap?p_cod_ins=01UUVNB&p_a_acc=2021&p_header=S&p_lang=	