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MATHEMATICAL TOOLS 

SIGNALS DEFINITION AND COMMONLY USED SIGNALS 

 

We can define a signal as any time-dependent physical quantity; we use signal to transmit and 

receive information. Their natural mathematical representation is a function of time of the kind: 

𝑆: ℝ → ℝ 

For real-valued signals, or 

𝑆:ℝ → ℂ 

For complex-valued signals 

This formulation is intended for signals that are defined for every instant of time, that is for analog 

signals. Analog signals can be discontinuous functions, but are defined over the real domain. 

Another kind of signal is the discrete time signal, a function of time of the form: 

 

𝑆𝑑: ℤ → ℝ 
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For real-valued discrete time signals or: 

𝑆𝑑: ℤ → ℂ 

For complex-valued discrete time signals. 

A discrete time signal is a sampled representation of a continuous time signal, namely, a collection 

of values that the continuous time signals assumes at particular time instants; these time instants are 

commonly multiples of a quantity called sampling time 𝑇𝑠. 
With the definition of the sampling time, a discrete time signal can be defined over instants of time 

that are not integers, but the resulting domain will always be a sequence of discrete values to which 

we can refer with integer numbers. 

An example of analog signal can be the following: 

𝑆(𝑡) = sin(𝜔𝑡) 

While the respective sampled version looks like: 

𝑆(𝑛𝑇𝑠) = sin(𝜔𝑛𝑇𝑠)    𝑤𝑖𝑡ℎ 𝑇 ∈  ℝ;    𝑛 = 1,2,3… 

In automatic control area, the most used  analog signal are the following: 

 Dirac’s Delta: an impulsive signal denoted with 𝛿(𝑡) or 𝑢−1(𝑡) that is non-zero only in the 

origin and that carries a finite quantity of energy (more about this in the links) 

 Heaviside step function: a signal denoted with 𝑢0(𝑡) defined as: 

𝑢0(𝑡) = {

1  𝑓𝑜𝑟 𝑡 > 0
1

2
 𝑓𝑜𝑟 𝑡 = 0

0 𝑓𝑜𝑟 𝑡 < 0

 

 Polynomial signals of the form 𝑢𝑛(𝑡) =
𝑡𝑛

𝑛!
 , for which the factorial scaling is defined only 

for the aim of the common calculations to be applied at the signal. 

Discrete-time equivalent versions of the above signals are always possible. 

Useful links:  

- About Dirac’s Delta and step function:  

https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-

fourier-series-and-laplace-transform/step-and-delta-functions-integrals-and-generalized-

derivatives/ from MIT university. 

- About the sampling process and discretization theory: 

https://ccrma.stanford.edu/~jos/pasp/Sampling_Theory.html from Stanford University 

 

LINEAR DIFFERENTIAL EQUATIONS 

 

We will deal with linear differential equations (LDE). In such equations, the unknown function and 

its derivatives are linearly combined. We will manage functions of one variable, so that the class of 

equations on which we will focus are the Ordinary differential equations (ODE); we will implicitly 

https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/step-and-delta-functions-integrals-and-generalized-derivatives/
https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/step-and-delta-functions-integrals-and-generalized-derivatives/
https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/step-and-delta-functions-integrals-and-generalized-derivatives/
https://ccrma.stanford.edu/~jos/pasp/Sampling_Theory.html
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assume that the independent variable for the unknown function is time, so that the form of the 

equations will be like the following: 

𝑦̇ − 𝐾(𝑡)𝑦 = 0 

𝑎𝑦̈ − 𝑏𝑦̇ = 0 

𝑎𝑦 − 𝑏𝑦̈ + 𝑐𝑦̇ + 𝑑𝑦 = 𝑔(𝑡)  
 

We briefly explain some properties and definitions about these kind of equations: 

1) The order of the differential equation is given by the higher order of derivative that appears 

in the equation; some degree of derivative can be missing, as well as the function itself, like 

in the second equation above. 

2) The known term can be equal or different from zero (𝑔(𝑡) in the third equation); in the first 

case we speak about homogeneous differential equation, non-homogeneous in the other case. 

3) The coefficients of the unknown function can be constant or time variant (𝐾(𝑡) in the first 

equation).   

4) The solution of a generic linear differential equation is given by the sum of two 

functions: 𝑧(𝑡) is the solution of the homogeneous associated equation (that is the equation 

in which 𝑔(𝑡), if present, is set to zero); 𝜑(𝑡), that is one particular solution of the non-

homogeneous differential equation.  

5) To solve the LDE in closed form, we need to know the initial conditions, that is, we need to 

solve the Cauchy problem. The number of initial conditions must be equal to the degree of 

the differential equation. 

6) An n-th order linear differential equation can be decomposed in a system of n first order 

differential equations. 

7) For the linear differential equations, the principle of superposition holds: if 𝑦1(𝑡), 𝑦2(𝑡) are 

two solutions of a linear differential equation, the function 𝑦𝑡𝑜𝑡(𝑡) = 𝑐1𝑦1(𝑡) +

𝑐2𝑦2(𝑡) 𝑤𝑖𝑡ℎ 𝑐1, 𝑐2  ∈ ℝ is still a solution for the LDE.  

 

Useful links: 

 -“Differential Equations and Dynamical Systems”, Lawrence Perko, Springer 

-http://mathinsight.org/ordinary_differential_equation_introduction (from Math Insight) 

-https://www.youtube.com/watch?v=tF9eEGs8aao (lesson by Dr Chris Tisdell) 

-http://tutorial.math.lamar.edu/Classes/DE/IntroBasic.aspx (From Paul’ online Math notes) 

-http://www.math.psu.edu/tseng/class/Math251/Notes-LinearSystems.pdf (From Penn State 

Univesity). 

 

EXAMPLE: FROM HIGH ORDER DIFFERENTIAL EQUATION TO A SYSTEM OF FIRST ORDER DIFFERENTIAL 

EQUATIONS 

http://mathinsight.org/ordinary_differential_equation_introduction
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Given the following differential equation: 

6𝑦̈ − 4𝑦̇ + 𝑦 = 0 

We can write the substitution: 

{
𝑥1 = 𝑦
𝑥2 = 𝑦̇

 

From which we get: 

 

{
𝑥1̇ = 𝑥2
𝑥2̇ = 𝑦̈

 

And: 

{

𝑥1̇ = 𝑥2

𝑥2̇ =
4𝑥2 − 𝑥1

6

 

 

We obtained a first order system of LDE from a second order one. 

 

LINEAR DIFFERENCE EQUATIONS 

 

In the field of control, most of the time the algorithms and the data acquisition systems are digital; 

this leads to refer to the discrete counterpart of differential equations, that is, difference equations. 

Even in this formulation, the equations that we will treat are linear, and take the form: 

𝑦(𝑘 − 1) − 𝛼(𝑘)𝑦(𝑘) = 0 

𝑎𝑦(𝑘 − 2) − 𝑏𝑦(𝑘 − 1) = 0 

𝑎𝑦(𝑘 − 3) − 𝑏𝑦(𝑘 − 2) + 𝑐𝑦(𝑘 − 1) + 𝑑𝑦(𝑘) = 𝑔(𝑘) 

Where the unknown discrete sequence 𝑦(𝑘) represents a discrete time signal that satisfies the 

relation imposed by the equation. Linear difference equations can be characterized with the same 

properties that we exposed for the linear differential equations.  

 

INTEGRAL TRANSFORMS 

 

WHY INTEGRAL TRANSFORMS 

 

The study of dynamical systems can tackled in two different domains: time domain and complex 

variable domains. This is possible due to three main integral transformations that allows us to 



  CONTROL REVIEW 

 

 

 

 

8 

 

describe a system of differential (difference) equations in terms of a system of algebraic equations of 

complex variables. In the case of the linear systems, this operation is very useful since the inverse 

transformation of such a system can always be calculated in closed form.  

The three transformations that we are going to use are: 

 Laplace transform: transforms a function of the real variable 𝑡 into a function of the complex 

variable 𝑠 = 𝜎 + 𝑗𝜔. 

 Fourier transform: is a particular case of the Laplace transform: transforms a function of the 

real variable 𝑡 into a function of the complex variable 𝑗𝜔  . The Fourier transform allows to 

operate a frequency domain analysis of signals and systems. 

 Z-Transform: is an equivalent of the Laplace transform applied to discrete time signals. It 

the main tool in the area of digital control and signal processing. 

 

LAPLACE TRANSFORM: DEFINITION 

 

The (unilateral) Laplace transform of a function of real value 𝑡 is defined as follows:  

 

𝐹(𝑠) = L{𝑓(𝑡)}=∫ 𝑓(𝑡)𝑒−𝑠𝑡𝑑𝑡
∞

0
 

And: 

𝑓(𝑡) = L-1{𝐹(𝑠)} =
1

2𝜋𝑗
lim
𝑇→∞

∫ 𝐹(𝑠)𝑒𝑠𝑡𝑑𝑠
𝛾+𝑖𝑇

𝛾−𝑖𝑇
 

For practical purposes, the computation of the direct Laplace transform is made using pre-compiled 

tables of the transformations, while the inverse Laplace transform is made using the partial fraction 

expansion, that avoids the resolution of the integrals.   

A list of the most commons Laplace transforms is the following: 
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Useful Links: 

-“Control systems fundamentals” William S.Levine, CRC press LLC  

-https://www.youtube.com/watch?v=ZGPtPkTft8g a graphical interpretation by Brian Douglas. 

https://www.youtube.com/watch?v=sZ2qulI6GEk from MIT openCourseWare  

 

https://www.youtube.com/watch?v=ZGPtPkTft8g
https://www.youtube.com/watch?v=sZ2qulI6GEk
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PROPERTIES OF THE LAPLACE TRANSFORM 

From the definition, the following properties of the Laplace transform derive: 

 

The most used in practice are: 

 Time differentiation 

 Time integration 

 Time convolution 

 Final value theorem (Pay attention: this theorem can be applied if and only if the limit in the 

time domain exists) 

That allow to get an algebraic equation starting from an integral-differential one, and to compute a 

convolution as a simple multiplication. Further theory about Laplace transform. 

 

PARTIAL FRACTION EXPANSION 

The transformation of the linear differential equations with constant coefficients generally leads to 

the calculus of inverse Laplace transform of a rational fraction of the type: 

𝐹(𝑠) =
𝑏𝑚𝑠

𝑚 + 𝑏𝑚−1𝑠
𝑚−1+… + 𝑏0

𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1+… + 𝑎0
 

The roots of the numerator are called zeros, while the roots of the denominator are called poles. 

Since the coefficients of the function are real numbers, the zeros and the poles will be real or complex 
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conjugate numbers.   

Since a rational fraction can be decomposed in a linear combination of terms of the form: 

𝐹(𝑠) =∑
𝑟𝑖

(𝑠 − 𝑝)𝑗

𝑛

𝑖=1

  

Where 𝑝 is a pole of the 𝐹(𝑠) function and 𝑗 is its multiplicity. The coefficient 𝑟𝑖 is called residue 

associated with the pole 𝑝 and is a real or complex coefficient. Since this kind of term has an 

immediate anti-transformation that can be derived from the table above, the time behavior of 𝐹(𝑠) 
can be easily predicted once the residue is calculated. We will show some examples about partial 

expansion method.  

Useful Links: 

http://faculty.atu.edu/mfinan/4243/Laplace.pdf from Arkansas Tech University 

https://www.youtube.com/watch?v=D6Rd1K93nSA  from the channel of MIT openCourseWare 

https://www.youtube.com/watch?v=aX-t-xj5oaE from the channel of Doers and Thinkers 

 

https://www.khanacademy.org/math/algebra-home/alg-rational-expr-eq-func/alg-partial-

fraction/e/partial_fraction_expansion_1  in this link you can find a tutored guide to solve exercises 

about partial fractions expansion and some video lectures.  

 

EXAMPLE 1: LAPLACE DIRECT AND INVERSE TRANSFORMATION OF EXPONENTIAL FUNCTIONS 

 

Given the following function of time: 

𝑓(𝑡) = (−2 + 5 𝑒−2𝑡 − 7𝑒−5𝑡)𝑢0(𝑡) 

Where we denote with 𝑢0(𝑡) the unitary step function, defined as follows: 

𝑢0(𝑡) = {

1  𝑓𝑜𝑟 𝑡 > 0
1

2
 𝑓𝑜𝑟 𝑡 = 0

0 𝑓𝑜𝑟 𝑡 < 0

  

We want to compute its Laplace transform. Since the function is a linear combination of exponentials, 

each term can be transformed alone, due to the linearity of the Laplace transform; we have from the 

tables: 

L{−2𝑢(𝑡)} = −
2

𝑠
 

L{5 𝑒−2𝑡𝑢(𝑡)} = 5

𝑠+2
 

L{−7𝑒−5𝑡𝑢(𝑡)} = −7

𝑠+5
 

And then: 

http://faculty.atu.edu/mfinan/4243/Laplace.pdf
https://www.youtube.com/watch?v=D6Rd1K93nSA
https://www.youtube.com/watch?v=aX-t-xj5oaE
https://www.khanacademy.org/math/algebra-home/alg-rational-expr-eq-func/alg-partial-fraction/e/partial_fraction_expansion_1
https://www.khanacademy.org/math/algebra-home/alg-rational-expr-eq-func/alg-partial-fraction/e/partial_fraction_expansion_1
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L {𝑓(𝑡)} = − 2

𝑠
+

5

𝑠+2
−

7

𝑠+5
 

Suppose now we have the complex variable expression: 

𝐹(𝑆) =
−4𝑠2 − 3𝑠 − 20

𝑠3 + 7𝑠2 + 10𝑠
 

And we want to compute its inverse transformation; we can apply the partial fraction expansion since 

it is a rational fraction.  

The procedure to do this is the following: 

  Find the poles of the ratio: the values for which the denominator gets null are  

  {

𝑝1 = 0
𝑝2 = −5
𝑝3 = −2

 

From which we can state that the ratio can be written as: 

𝐹(𝑆) =
𝑟1
𝑠
+

𝑟2
𝑠 + 2

+
𝑟3

𝑠 + 5
 

The values of the residuals can be found multiplying the expression by the denominator to which the 

residual is associated and then substituting to the Laplace variable the value of the pole associated 

with the residual. In this case we get: 

𝑟1 = [𝑠𝐹(𝑠)] = 𝑠
−4𝑠2 − 3𝑠 − 20

𝑠3 + 7𝑠2 + 10𝑠
= 𝑠

−4𝑠2 − 3𝑠 − 20

𝑠(𝑠 + 2)(𝑠 + 5)
= −2      𝑓𝑜𝑟 𝑠 = 0 

𝑟2 = [(𝑠 + 2)𝐹(𝑠)] = (𝑠 + 2)
−4𝑠2 − 3𝑠 − 20

𝑠3 + 7𝑠2 + 10𝑠
= (𝑠 + 2)

−4𝑠2 − 3𝑠 − 20

𝑠(𝑠 + 2)(𝑠 + 5)
= 5     𝑓𝑜𝑟 𝑠 = −2 

𝑟3 = [(𝑠 + 5)𝐹(𝑠)] = (𝑠 + 5)
−4𝑠2 − 3𝑠 − 20

𝑠3 + 7𝑠2 + 10𝑠
= (𝑠 + 5)

−4𝑠2 − 3𝑠 − 20

𝑠(𝑠 + 2)(𝑠 + 5)
= −7     𝑓𝑜𝑟 𝑠 = −5 

 

So that our expression becomes: 

𝐹(𝑆) =
−2

𝑠
+

5

𝑠 + 2
+

−7

𝑠 + 5
 

And our time domain function can be evaluated by means of the tables: 

𝑓(𝑡) = (−2 + 5 𝑒−2𝑡 − 7𝑒−5𝑡)𝑢(𝑡) 

 

EXAMPLE 2 

 

In the previous example the poles were real; if we have the following function: 
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𝐹(𝑠) =
𝑠

𝑠2 + 4𝑠 + 13
 

The poles of the denominator are: 

{
𝑝1 = −2 + 𝑗3

𝑝2 = 𝑝1
∗ = −2 − 𝑗3

 

We have complex conjugate poles. The expression can be written as: 

𝑟1
𝑠 + 2 − 𝑗3

+
𝑟1
∗

𝑠 + 2 + 𝑗3
 

In this case also the residuals are complex conjugated one of the other, so we can calculate only one 

of them: 

𝑟1 = [(𝑠 + 2 + 𝑗3)𝐹(𝑠)] =
1

2
+
𝑗

3
         𝑓𝑜𝑟 𝑠 = −2 + 𝑗3 

We have now the following expression: 

𝐹(𝑠) =

1
2 +

𝑗
3

𝑠 + 2 − 𝑗3
+

1
2 −

𝑗
3

𝑠 + 2 + 𝑗3
 

 

To find the time domain behavior we will need the following information: 

|𝑟1| =
√13

6
     

𝑎𝑛𝑔𝑙𝑒(𝑟1) = 𝜑1 = arctan (
2

3
)  

𝛼1 = 𝑅𝑒(𝑝1) = −2 

𝜔1 = 𝐼𝑚(𝑝1) = 3  

If we proceed as we did in the previous example, where the poles and the residuals were real, we can 

derive the following expression: 

𝑓(𝑡) = (𝑟1𝑒
𝑝1𝑡 + 𝑟1

∗𝑒𝑝1
∗𝑡)𝑢(𝑡) 

In this case, we have complex coefficients and exponentials. By writing the precedent expression in 

polar form, we get: 

𝑓(𝑡) = |𝑟1|𝑒
𝑗𝜑1𝑒(𝛼1+𝑗𝜔1)𝑡 + |𝑟2|𝑒

𝑗𝜑2𝑒(𝛼2+𝑗𝜔2)𝑡 = 

= |𝑟1|𝑒
𝛼1𝑡(𝑒𝑗(𝜔1𝑡+𝜑1) + 𝑒−𝑗(𝜔1𝑡+𝜑1))𝑢(𝑡) = 

= 2|𝑟1|𝑒
𝛼1𝑡 cos(𝜔1𝑡 + 𝜑1) 𝑢(𝑡) 

Where the module and the phase of the two residuals are equal since they are complex conjugate. 

In our case: 
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𝑓(𝑡) =
√13

3
𝑒−2𝑡 cos (3𝑡 + 𝑎𝑟𝑐𝑡𝑎𝑛 (

2

3
)) 𝑢(𝑡) 

We can note that the pulsation of the cosine and the coefficient of the exponential function are 

derived only on the poles characteristics. The residuals has no influence on these characteristics of 

the response. 

 

FOURIER TRANSFORM: DEFINITION 

 

The Fourier transform has an interpretation as a particular case of the Laplace transform. Its definition 

is the following: 

𝐹(𝑗𝜔) = F {𝑓(𝑡)}=∫ 𝑓(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡
∞

−∞
 

And: 

𝑓(𝑡) = F -1{𝐹(𝑗𝜔)} =
1

2𝜋
∫ 𝐹(𝑗𝜔)𝑒𝑗𝜔𝑡𝑑𝜔
∞

−∞
 

This transformation can be obtained taking only the imaginary part of the Laplace variable  𝑠 = 𝜎 +

𝑗𝜔. 

The meaning of the Fourier transform is that a function of time that respects some continuity 

conditions has a representation as a superposition of infinite complex exponentials with proper 

pulsation. In the real domain, it corresponds to the superposition of infinite sinusoidal functions with 

proper amplitude, phase and frequency. In particular, the module of the complex function 𝐹(𝑗𝜔) 

represents the amplitude of the sinusoidal component for every 𝜔, while the phase of 𝐹(𝑗𝜔) 
represents the initial phase of every sinusoidal component.  

The transformed function 𝐹(𝑗𝜔) is the spectrum of the function 𝑓(𝑡). Since the combination of the 

sinusoidal components is linear, the Fourier analysis is useful to decompose a problem in sub-

problems for which the solution is known.   

 

Useful links:   

- https://www.youtube.com/watch?v=gZNm7L96pfY Lectures about Fourier transform by Stanford 

University 

- https://www.youtube.com/watch?v=1JnayXHhjlg An introduction about Fourier transform by Brian 

Douglas 

- https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-

series-and-laplace-transform/fourier-series-basics/ Useful material by MIT openCourseWare 

 

PROPERTIES OF THE FOURIER TRANSFORM 

The main properties of the Fourier transform are the following: 

https://www.youtube.com/watch?v=gZNm7L96pfY
https://www.youtube.com/watch?v=1JnayXHhjlg
https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/fourier-series-basics/
https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/fourier-series-basics/
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And are related to the corresponding Laplace properties.  

In the field of Automatic control, the inverse transform of the Fourier transform is not a common 

practice; in fact the spectral analysis is made to evaluate globally the frequency content of a signal 

before and after the transition through a LTI system, or to evaluate the amplitude and the phase of an 

output single frequency.  

Useful links:  

- https://www.youtube.com/watch?v=D1WF9YKqf3o About Fourier’s transform properties 

https://www.youtube.com/watch?v=D1WF9YKqf3o
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 Z-TRANSFORM 

The Z-transform is the main mathematical tool that is used in the field of digital control; it is used 

when we have to manage discrete time signals, or when we want to implement a digital controller.  

It its standard expression, given a sequence of samples 𝑥[𝑛], the Z-Transform works as follows: 

𝑋(𝑧) = 𝑍{𝑥[𝑛]} =∑𝑥[𝑛]𝑧−𝑛
∞

−∞

 

Or: 

𝑋(𝑧) = 𝑍{𝑥[𝑛]} =∑𝑥[𝑛]𝑧−𝑛
∞

0

 

Used in practice to treat finite length sequences.  

The 𝑧 variable is a complex variable. In particular if we apply the substitution 𝑧 = 𝑒𝑠𝑇 where s is the 

Laplace variable and 𝑇 is the sampling time of the discrete signal (that we will always consider 

constant), we get the Laplace transform of the discrete sequence of samples. This fact indicates how 

the 𝑧 variable plane is obtained by a transformation of the Laplace complex plane.  

The formal definition of the inverse Z-transform is rarely used in practice, since in LTI systems the 

expressions that we manage involving the 𝑧 variable are rational fractions, that can be easily anti-

transformed 
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PROPERTIES OF Z TRANSFORM AND COMMONLY USED TRANSFORMATIONS 

 

 

A list of the main properties of the Z transform is shown in the table; the most important fact is that 

the 𝑧 variable represents a time-shift operator; the power of 𝑧 indicates how many steps of lead or 

lag the relative sample in the time suffers; for example: 

𝑌(𝑧) → 𝑦[𝑛] 

𝑌(𝑧)𝑧−1 → 𝑦[𝑛 − 1] 

𝑌(𝑧)𝑧−2 → 𝑦[𝑛 − 2] 

𝑌(𝑧)𝑧 → 𝑦[𝑛 + 1] 

… 

This property is useful to obtain time domain differences equations that represent the behavior of 

the system in time. 

A list of the most common z-transforms related to the Laplace transforms follows: 
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Where 𝑇 is the sampling time at which the continuous time process is monitored.  

 

HOW TO OBTAIN THE Z TRANSFORM 

 

If we are dealing with sequences of samples, the Z transform can be easily calculated; anyway, often, 

we start from a continuous time physical description, suitable to be studied in the Laplace variable 

domain. It is possible to pass from the Laplace expression to the Z expression of the behavior of the 

system by fixing a sampling interval 𝑇𝑆 for the continuous time data time. Is also possible to do the 

inverse operation.   

In addition, the Z transform can be obtained after a system identification procedure, that is the 

estimation of the characteristics of the system by means of input/output pairs of samples. 

EXAMPLE: Z-TRANSFORM FROM A LAPLACE EXPRESSION 

 

Suppose we are given with the previous expression in the 𝑠 domain: 

𝐹(𝑠) =
𝑠

𝑠2 + 4𝑠 + 13
 

This expression has its continuous time domain transformation; if we want to consider only discrete 

time samples, we can use the Z-transform, obtaining it directly from the 𝑠 domain function. Once one 

fixes the sampling time, the equivalent expression in Z-domain can be obtained by use of the tables 
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or, most often, by automated algorithms; for example in Matlab, the command c2d (continuous to 

discrete), given the sampling time 𝑇𝑠  = 0.001, returns: 

𝐹(𝑧) =
0.000998𝑧 − 0.000998

𝑧2 − 1.996𝑧 + 0.996
  

If we change the sampling time, the expression changes consequently; with 𝑇 = 0.01 

 

𝐹(𝑧) =
0.009801𝑧 − 0.009801

𝑧2 − 1.96𝑧 + 0.9608
 

RELATED MATLAB COMMANDS 

 

A list of useful Matlab functions regarding integral transforms follows; notice that from the command 

window one can type ‘help’ followed by the command name to have almost all the information about 

that function, in particular about outputs and necessary input arguments. 

 tf (…) is able to define an output variable of the type ‘tf’. It is useful to define a Laplace 

variable ‘s’ 

 laplace (…) calculates the laplace transform of a symbolic expression 

 fourier (…) calculates the fourier transform of a symbolic expression 

 ztrans (…)calculates the Z- transform of a symbolic expression 

 residue (…) is used both to convert a polynomial into partial fraction form or vice versa 

 

 

MODELLING OF DYNAMICAL SYSTEMS 

GENERALITIES ON DYNAMICAL SYSTEMS 

 

Automatic Control is the branch of the System Theory that studies the methodologies to be applied 

when we want a particular dynamic system to respond in a certain way, either when it is free to evolve 

or when it undergoes exogenous inputs.  

Such a definition reflects one of the most powerful aspects of the subject, that is, its generality. 

We speak about dynamical system when the evolution of such a system is determined not only by the 

present input, but also by its previous history: the system reacts in different ways to the inputs with 

reference to its ‘state’.   

On the contrary, a static system exhibits an instantaneous reaction to the input independently on its 

past. 

A practical example of a dynamical system is the process of the room heating; we all experienced 

that the reach of the desired temperature is a long-term process that evolves in function of the room 

temperature and of the surrounding conditions; a counterexample of static system is the turn on of a 

light bulb, that is (almost) instantaneous.  

These two phenomena should suggest us that we could describe a static system with an algebraic 

language, while we cannot describe a dynamical system without seek help of differential equations 



  CONTROL REVIEW 

 

 

 

 

20 

 

or differences equations. Indeed, all the descriptions of dynamical system are based upon differential 

(difference) equations, and it should be clear, since as we cannot say which the solution of a 

differential equation is without knowing the initial conditions, we cannot describe a system dynamic 

without knowing its initial state. The initial conditions (surrounding conditions) can be generally 

thought as the system ‘state’ even if, as we will say later, the concept of state is more abstract. Even  

the concept of ‘output’ of a system is quite general: a system can have a spread of possible outputs 

we don’t care about. In the room heating example, we generally think at the room temperature as the 

classic output, but we would be interested in other quantities that changes during the process 

(humidity is just an intuitive example) and in that case, those would become our output. We could be 

interested to multiple outputs as well. In most of cases, our output of interest can be derived once we 

know the state of the system and the inputs.  

  

EXAMPLE: STATIC AND DYNAMIC SYSTEMS. 

 

We now show the difference between a static and dynamic system.  

Consider the logic component AND gate: 

 

The symbol represents a component that exhibits the following behavior: 

 

A B out 

1 1 1 

1 0 0 

0 1 0 

0 0 0 

 

This table imposes an instantaneous relationship between the output and the two inputs. There is no 

reference to the history of the gate: when the input changes, the output changes at the same time. 

Another example of static system is the summing amplifier: 
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This circuit gives as output: 

𝑂𝑢𝑡 = −(𝑉1 + 𝑉2) 

Also in this case, the relationship between the inputs and the output is algebraically described and 

there’s no memory in the system.  

A classic example of a dynamical system is the mass-spring system: 

 

The second law of motion leads to the following differential equation: 

𝑚𝑥̈ = −𝑘𝑥 

This is a second order linear differential equation with constant coefficients; the evolution of the 

system cannot be described in closed form without the knowledge of the two initial conditions: 

{
𝑥(0) = 𝑥0
𝑥̇(0) = 𝑣0

 

This fact imposes a dependency of the system from its past, and introduces the concept of state of the 

system. 

All the three examples we showed are time-invariant: the input-output relationship of the static system 

doesn’t change in time; the differential equation of the mass-spring system has constant coefficients. 

Note that nether the gate or the operational amplifier are actually instantaneous in their response: in 

our description we simply neglect their dynamics due to their speed. In some context, this kind of 

description would not be sufficient, so even this two simple system would become dynamical 

systems. 

 



  CONTROL REVIEW 

 

 

 

 

22 

 

MATHEMATICAL DESCRIPTION AND PROPERTIES 

 

A general mathematical formulation follows.  

For a static system, we have:  

𝒚(𝑡) = 𝑓(𝒖(𝑡)) 𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑡𝑖𝑚𝑒 𝑠𝑡𝑎𝑡𝑖𝑐 𝑠𝑦𝑠𝑡𝑒𝑚 

𝒚(𝑘) = 𝑓(𝒖(𝑘)) 𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑖𝑚𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑠𝑦𝑠𝑡𝑒𝑚 

For a dynamical system: 

𝒚(𝑡) = 𝑓(𝒖(𝑡), 𝒙(𝑡), 𝑡)𝑓𝑜𝑟 𝑐𝑜𝑛𝑡𝑖𝑛𝑢𝑜𝑢𝑠 𝑡𝑖𝑚𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 

𝒚(𝑘) = 𝑓(𝒖(𝑘), 𝒙(𝑘), 𝑡)𝑓𝑜𝑟 𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑒 𝑡𝑖𝑚𝑒 𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑠𝑦𝑠𝑡𝑒𝑚𝑠 

Where we denoted the outputs with  𝒚(𝑡), the inputs with 𝒖(𝑡) and the states with 𝒙(𝑡)  (and relative 

discrete sequences for discrete time); in the general formulation, they are vectors.; t is the time. We 

distinguish the systems on the base of the number of their inputs and their outputs in: 

 SISO (single input-single output): 𝒚(𝑡), 𝒖(𝑡)  ∈  ℝ 

 SIMO(single input-multiple output): 𝒚(𝑡) ∈  ℝ𝑛, 𝒖(𝑡)  ∈  ℝ 

 MISO(multiple input-single output): 𝒚(𝑡) ∈  ℝ, 𝒖(𝑡)  ∈  ℝ𝑛 

 MIMO(multiple input-multiple output): 𝒚(𝑡) ∈  ℝ𝑛, 𝒖(𝑡)  ∈  ℝ𝑚 

With obvious discrete time parallel.   

We now focus on the time variable 𝑡 that appears in the functional written above; this explicit 

dependence is there to denote that a system can change its behavior in time, for example, due to the 

variation of particular parameters that are time variant or due to other causes. A system that does not 

change its behavior in time is called Time-Invariant, that is to say, its response doesn’t depend on 

absolute time: to stimulate this system now or tomorrow in the same way will return the same results. 

Another fundamental distinction for dynamical systems is based upon their linearity: a system is 

linear when all the relations among the quantities (inputs, outputs, states) are linear, that is when the 

differential equations that hold the system are linear. An interesting fact about linear differential 

equations is that a higher order linear differential equation can be arranged in a system of first order 

differential equation (which solution can be found easily).The linear systems theory is more complete 

and predictive than the non-linear systems one.  

In the following, we will always deal with causal dynamic systems, for which the output is 

determined only by the past and the present values of the quantities that regulates the system (input, 

states).  

 

Useful links: 

-“System Dynamics”, Dean C. Karnopp, Donald L. Margiolis, Ronald C.Rosenberg, John Wiley & 

Sons Inc. 

-“Introduction to the Mathematical Theory od Systems and Control”, Jan Willem Polderman, Jan 

C.Willems 

http://mathinsight.org/dynamical_system_idea (From Math insight) 

http://mathinsight.org/dynamical_system_idea
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EXAMPLE: ELECTRICAL NETWORK EXAMPLE 

 

 

 

 

 

 

We analyze now the charge of a capacitor.  

First, we can pinpoint inputs and output of this system; the figure suggests us that the output of the 

circuit is the voltage across the resistor, and we will proceed according to this choice, but we could 

be interested as well to the voltage across the capacitor, or to both the voltages. This means that this 

system can be a multiple output or a single output one, according to our will. The input is labeled as   

𝑉𝑖𝑛, and that is the voltage that we impose to the network.   

We chose to monitor only the Voltage across the resistor, even if we would be monitoring also the 

voltage across the capacitor (and then we would had a multiple output system).  

To solve this system we must use three equations from the circuit theory: 

{
 
 

 
 
𝑉𝑅 = 𝑉𝑜𝑢𝑡 = 𝑅𝐼

𝐼𝑐 = 𝐶
𝑑𝑉𝑐
𝑑𝑡

∑𝑉𝑖 = 0

3

𝑖

 

 

These represent the two constitutive law of the components and the Kirchhoff law for the voltages. 

Since the current flowing into the two components is the same, we can use the equations to write:

  

𝑉𝑖𝑛 = 𝑉𝐶 + 𝑉𝑅 

𝑉𝑖𝑛 = 𝑉𝐶 + 𝑅𝐶
𝑑𝑉𝑐
𝑑𝑡

 

We know from the Analysis that this equation has a unique solution and that, given an initial 

condition, we can fix this solution. It is not our goal to reach this solution now, but to emphasize the 

structure of this differential equation; it shows the following form:  

𝑦̇ + 𝑎𝑦 = 𝑔(𝑡) 

This equation is a linear differential equation, since the function to be found and its derivative are 

present in the form of a polynomial of the first order in every term.  

We now focus on the other quality that we defined for a system, which is the time-invariance. We 

note that the system is completely defined by the differential equation above; the only things that can 
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change the properties of the solution are the resistance and the capacitance, two parameters. We 

assumed that these parameters are constant, so the solution of the differential equation will be the 

same always, given the same initial condition. This assumption could not be verisimilar; the 

parameters of the system could change in time, and in most of cases, they do. In this case the system 

is not time invariant. Even the simple example above is physically time variant, since the components 

undergo to the usage wear and change their characteristics in time; anyway, the process is slow 

enough for most of the application, so we can think at the parameters as constant. 

Application of superposition principle (linearity):  

Return to the simple electrical network example; suppose that the input of the circuit is: 

𝑉𝑖𝑛(𝑡) = 𝑉1(𝑡) + 𝑉2(𝑡) 

Suppose that we know the response of the system to the inputs 𝑉1(𝑡) 𝑎𝑛𝑑 𝑉2(𝑡) separately, but we 

don’t know the response to  𝑉𝑖𝑛(𝑡).  

The superposition principle assures us that:  

𝑉𝐶𝑡𝑜𝑡 = 𝑉𝐶(𝑉1) + 𝑉𝐶(𝑉2)  

Where the two terms satisfies the differential equation:  

𝑉1 = 𝑉𝐶(𝑉1) + 𝑅𝐶
𝑑𝑉𝐶(𝑉1)

𝑑𝑡
 

𝑉2 = 𝑉𝐶(𝑉2) + 𝑅𝐶
𝑑𝑉𝐶(𝑉2)

𝑑𝑡
 

EXAMPLE: THE PENDULUM 

 

We now expose a second famous example, the simple pendulum. This example gives an idea of how 

important is linearity for our purposes. 

 

 

 

 

 

 

 

 

The governing equation for the pendulum dynamics is the Newton’s law. We can chose a reference 

system attached to the mass M, such that a principal axe is oriented as the wire (normal axe), the other 

perpendicular to the wire (tangent axe). With this assumption, the two equations for the forces 

equilibrium are 

 

∑𝐹𝑛 = 0 
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∑𝐹𝑡 = 0 

The normal forces that act on the system are the normal gravity component and the wire reaction T.

  

𝑇 −𝑀𝑔 cos 𝜃 = 0 

Where the normal acceleration is set to zero, since the mass never changes its position with respect 

to the center O. The tangential forces, in absence of friction are the mass inertia and the gravitational 

component. 

𝑀𝑔 sin 𝜃 +𝑀𝑎𝑡 = 0 

This last equation is the one we need to foresee the system dynamic. We write: 

𝑎𝑡 = 𝑔 sin 𝜃 

We now know that the amplitude of the arc fixed by the mass position and the vertical is 

𝑥 = 𝐿𝜃 

Therefore, we can turn back to the O reference system and write: 

{
𝑥 = 𝐿𝜃
𝑥̇ = 𝐿𝜃̇
𝑥̈ = 𝐿𝜃̈

 

Where our equation becomes: 

𝐿𝜃̈ =  𝑔 sin 𝜃 

So that the final differential equation for the pendulum angle becomes: 

𝜃̈ =  
𝑔

𝐿
sin 𝜃 

Looking at this equation, we notice that it is nonlinear: the unknown function 𝜃(𝑡)  and its derivatives 

do not appear only in polynomial form. The primitive function 𝜃(𝑡) is argument for the sine function. 

This makes the pendulum equation much more difficult to be solved than a linear one. For this reason, 

we linearize it. In this case, we can make a strong hypothesis about the pendulum behavior, bounding 

its evolution to a small angle of deviation from the vertical. We so operate a ‘small angle 

approximation’ for the sine function: 

sin 𝜃 ≃ 𝜃               𝜃 ≃ 0 

Getting to the linear equation:   

𝜃′′ = 
𝑔

𝐿
𝜃 

That has got a sinusoidal solution for all three the quantities, position, velocity, acceleration. 

 The linearization procedure is fundamental for an immediate study of the phenomenon and its 

control; anyway, it cuts off a large part of the system dynamics, which is intrinsically nonlinear. 

Another big advantage of linearization is the possibility to decompose a higher order linear 
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differential equation in to a system of first order differential equations. In our case, we can impose a 

variable substitution and get: 

𝑥1 = 𝜃 

𝑥2 = 𝜃̇ 

From which we decompose the second order differential equation into a system of first order 

equations: 

{
𝑥̇2 =

𝑔

𝐿
𝑥1

𝑥̇1 = 𝑥2

 

 

With this decomposition, we get a differential system. The two variables 𝑥1, 𝑥2 are the states of the 

physical system and characterize its dynamic. They are two, since the DE is of the second order. This 

is the link between the system states and the DE that holds the phenomenon.   

Notice that the substitution that we made is arbitrary. We chose position and velocity as the system 

states, but we could have chosen acceleration to be a state, being able to get the values of the third 

quantity. This emphasizes the fact that the minimum number of the states of a dynamical system is 

imposed by the physics, but we can use any set of states to describe the phenomenon properly.  

 

STATE SPACE DESCRIPTION 

 

STATE SPACE DESCRIPTION FOR LINEAR SYSTEMS IN CONTINUOUS TIME 

 

We now focus on the mathematical modelling of linear systems.    

Suppose that the functional: 

𝒚(𝑡) = 𝑓(𝒖(𝑡), 𝒙(𝑡), 𝑡) 

Can be described by means of linear differential equations; then, a State-Space representation of 

the following form is always possible: 

{
𝒙̇ = 𝐴(𝑡)𝒙 + 𝐵(𝑡)𝒖

𝒚 = 𝐶(𝑡)𝒙 + 𝐷(𝑡)𝒖
 

Where the terms of the system are vector functions of time with the following meanings: 

 𝒙 ∈  ℝ𝑛  Is the vector of the 𝑛 states that are present in the system 

 𝒙̇ ∈  ℝ𝑛 Is the vector of the derivatives of the 𝑛 states 

 𝒖 ∈  ℝ𝑝 Is the input vector 

 𝒚 ∈  ℝ𝑞 Is the output vector 

 𝐴(𝑡)  ∈  ℝ𝑛 ×𝑛  is the state matrix: it relates the value of the states to the value of their 

derivatives 
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 𝐵(𝑡) ∈  ℝ𝑛 ×𝑝  is the input matrix: it relates the value of the input to the value of the 

derivative of the states 

 𝐶(𝑡) ∈  ℝ𝑞 ×𝑛 is the output matrix: links the value of the state to the value of the output of 

interest 

 𝐷(𝑡) ∈  ℝ𝑝 ×𝑞 is the feedforward matrix: is the direct link from the input to the output  

In the above formulation, the four system matrices are functions of time; this is because the 

functional exhibits an explicit time-dependency, typical of time-variant systems. If the functional 

that the describes the systems can be written as: 

𝒚(𝑡) = 𝑓(𝒖(𝑡), 𝒙(𝑡)) 

Where  𝑓(∙) is a linear vector function, then the state-space representation is: 

{
𝒙̇ = 𝐴𝒙 + 𝐵𝒖
𝒚 = 𝐶𝒙 + 𝐷𝒖

 

With constant matrices 𝐴, 𝐵, 𝐶, 𝐷 is always possible. This last representation is the most common for 

systems that are linear and time-invariant. Such systems are referred to as LTI systems. 

 

Useful links: 

http://web.mit.edu/2.14/www/Handouts/StateSpace.pdf From MIT website 

“Modern control systems” ninth edition, R.C. Dorf, R.H. Bishop, Prentice Hall (first chapters) 

“System dynamics” K. Ogata, Prentice Hall (chapter 10)  

 

EXAMPLE: BUILDING THE STATE SPACE REPRESENTATION OF A SYSTEM 

 

The procedure to build the state space representation of a system is analogous to the decomposition 

of a higher order linear differential equation to a system of first order differential equations, once the 

states, the input and the outputs are defined. The first thing to do is to fix the states of the system, that 

are those quantities that are related to the others by means of an integral relation and thus take into 

account the memory of the system. Once the states are defined, their variation must be expressed in 

function of the input and of the states themselves. Consider the following RLC circuit: 

 

http://web.mit.edu/2.14/www/Handouts/StateSpace.pdf
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The two components that adds a state to the system are the inductor and the capacitor, for which the 

following relations must be satisfied: 

𝑣𝐿 = 𝐿
𝑑𝑖𝐿
𝑑𝑡

 

𝑖𝐶 = 𝐶
𝑑𝑣𝑐
𝑑𝑡

 

From these, we understand that the two states of the system are the voltage across the capacitor and 

the current through the inductor, since their instantaneous value is find through the integration of the 

other electrical variable: 

𝒙 = (
𝑖𝐿
𝑣𝑐
) 

Where the time dependency is implied.  

The input of the system in this case is the voltage source 𝑉𝐺.  

 We must express the variation of these quantities as a linear combination of themselves and of the 

inputs. To begin we can invert the relations: 

𝑑𝑖𝐿
𝑑𝑡

=
𝑣𝐿
𝐿

 

𝑑𝑣𝑐
𝑑𝑡

=
𝑖𝐶
𝐶

 

Now, the voltage across the inductor and the current through the capacitor must be expressed in terms 

of the states and the input.  

From the Kirchhoff voltage law we can state: 

𝑣𝐿 = 𝑉𝐺 − 𝑣𝐶 − 𝑉𝑅 

The only term that must be further changed is the voltage across the resistor, since it’s not a state. We 

express it as: 

𝑉𝑅 = 𝑖𝐿𝑅 

And get: 

𝑣𝐿 = 𝑉𝐺 − 𝑣𝐶 − 𝑖𝐿𝑅 

For the second equation, the things are easier since the current through the capacitor is the same as 

the current through the inductor, a state variable; this leads us to: 

{

𝑑𝑖𝐿
𝑑𝑡

=
𝑉𝐺 − 𝑣𝐶 − 𝑖𝐿𝑅

𝐿
𝑑𝑣𝑐
𝑑𝑡

=
𝑖𝐿
𝐶
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From the system above we must, by inspection, define the 𝐴, 𝐵, 𝐶, 𝐷 matrices; it is easy to find out 

that: 

𝐴 = (
−
𝑅

𝐿
−
1

𝐿
1

𝐶
0

) , 𝐵 = (
1

𝐿
0

) 

 

The above system can now be written by means of the vector equation: 

𝒙̇ = 𝐴𝒙 + 𝐵𝑢 

To complete the state space we must define the output of interest. Suppose we want to know the 

voltage across the capacitor; then the output will be a state and the 𝐶 matrix will be: 

𝐶 = (0 1) → 𝑦 = 𝐶𝒙 = 𝑣𝑐 

If we were interested to the inductor voltage, we had to define also the 𝐷 matrix since: 

𝑣𝐿 = 𝑉𝐺 − 𝑣𝐶 − 𝑖𝐿𝑅 → 𝐶 = (−𝑅  − 1)  ;     𝐷 = 1 → 𝑦 = 𝐶𝒙 + 𝐷𝑢 

If we were interested to both the states then we would have a SIMO system with the vector 𝑦 of the 

output: 

𝒚 =  𝐶𝒙  ;   𝐶 = (
1 0
0 1

) 

EXAMPLE: FURNACE HEATING MODELLING 

 

 

 

                                        Ta Q 

 T    C   K 

 

 

Consider the above schematization of a closed environment having thermal capacity C, homogeneous 

temperature T, Embedded in a box with thermic conductance K. The outer temperature is denoted 

with Ta. 

The thermal balance for the system is: 

𝐶𝑇̇ + 𝐾(𝑇 − 𝑇𝑎) = 𝑄 

If we are interested in the temperature T inside the furnace, it will be our output. We choose as input 

variables the heat flow Q and the outer temperature Ta. The state variable can be naturally defined as 

T, to get the following relation between the state and its derivative: 
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𝑥̇ = −
𝐾

𝐶
𝑥 +

𝐾

𝐶
𝑇𝑎 +

𝑄

𝐶
 

From this, we can build the state space representation: 

𝑥̇ = −
𝐾

𝐶
𝑥 + (

1

𝐶
0

0
𝐾

𝐶

)𝑢 

𝒚 = 𝑥 

Therefore, our matrices will be: 

𝐴 = 1 ;       𝐵 = (

1

𝐶
0

0
𝐾

𝐶

) ;        𝐶 = 1;       𝐷 = 0 

 

 

STATE SPACE DESCRIPTION FOR LINEAR SYSTEMS IN DISCRETE TIME 

 

When we manage with a linear, time-invariant discrete time system, the state space representation 

takes the form:  

 

{
𝒙(𝑘 + 1) = 𝐴𝒙(𝑘) + 𝐵𝒖(𝑘)
𝒚(𝑘) = 𝐶𝒙(𝑘) + 𝐷𝒖(𝑘)

 

 

The same definitions given for continuous linear systems hold. This representation is particularly 

suitable for the simulation and control purposes, since the evolution of the state and outputs 

sequences can be computed directly by means of matrix products. 

 

Useful links: 

-K.J. Astrom, B.Wittenmark, ‘Computer-controlled Systems’, Prentice-Hall 

 

IMPULSE RESPONSE AND TRANSFER FUNCTIONS  

 

IMPULSE RESPONSE AND CONVOLUTION 

 

Another way to describe the behavior of a dynamical linear time-invariant (LTI) system is its impulse 

response. It describes how the system reacts to the Dirac Delta. Since the system that we are 

describing is linear and time invariant, every possible output can be calculated by summing all the 

(impulse) responses generated by any possible input (every input signal can be decomposed in an 
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infinite sequence of Dirac delta).  

The impulse response completely characterizes the response of a dynamical system.  

The operation by which the output to any arbitrary input signal is computed is called convolution, or 

integral sum.  

We denote with ℎ(𝑡) the function that describes the impulse response of the system and with 𝑢(𝑡) 
the input signal; then the output of the system is computed through the formula: 

𝑦(𝑡) = ℎ(𝑡) ∗ 𝑢(𝑡) = ∫ 𝑢(𝜏)ℎ(𝑡 − 𝜏)𝑑𝜏
+∞

−∞

 

The convolution sums together all the impulse responses produced by the input, properly translated 

and amplified by the amplitude of the input itself in every instant of time (due to the properties of 

linearity and time invariance).  

Unfortunately, the computation of the convolution is often very heavy, so that it is convenient to work 

in the Laplace domain, where this operation is reduced to a simple product of complex functions. 

The impulse response is defined also in the discrete time domain by means of a proper 

sequence ℎ(𝑘), while the convolution in the discrete is expressed by the following sum: 

𝑦(𝑘) = ℎ(𝑘) ∗ 𝑢(𝑘) = ∑ 𝑢(𝑛)ℎ(𝑘 − 𝑛)

∞

𝑛=−∞

 

The above discussion is related to a SISO system; if the system is characterized by multiple inputs or 

multiple outputs, then the impulse response becomes a matrix of functions of proper dimension. 

 

Useful links:  

More on convolution and impulse response 

http://mathworld.wolfram.com/Convolution.html from MathWorld 

http://www.dspguide.com/ch6/2.htm  

 

“Unified signal theory”, G. Cariolaro, Springer, 2011 

 

CONTINUOUS TIME TRANSFER FUNCTIONS 

 

For continuous time systems, a transfer function is the expression in the Laplace domain of the 

impulse response that characterizes a LTI system. It allows to calculate the output of a system in the 

complex domain, since its form is the following: 

𝐻(𝑠) =
𝑌(𝑠)

𝑈(𝑠)
 

The 𝐻(𝑠) is always a rational function of 𝑠 for a LTI system. The degree of 𝑌(𝑠) is always greater or 

equal to the degree of 𝑈(𝑠) for a causal system. We can write: 

𝑌(𝑠) = 𝐻(𝑠)𝑈(𝑠) 

If we apply the inverse Laplace transform to this last expression we get: 

http://mathworld.wolfram.com/Convolution.html
http://www.dspguide.com/ch6/2.htm
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L-1{𝑌(𝑠)} = 𝑦(𝑡) = L-1{𝐻(𝑠)} ∗ 𝑢(𝑡)  

We notice that the time domain expression of 𝐻(𝑠) coincides with the impulse response ℎ(𝑡), since 

the output of the system is calculated by means of the convolution between ℎ(𝑡) itself and the input 

𝑢(𝑡). 
For this reason the transfer function is the Laplace transform of the impulse response.  

There are several ways to obtain the transfer function of a system: 

1) By direct transformation of the impulse response. 

2) From the differential formulation of the system description 

3) By an identification procedure that through experimentally collected data reconstructs the 

relationship that bonds input and outputs (this is the most used procedure in practice) 

Useful links: 

-https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-

series-and-laplace-transform/transfer-system-and-weight-functions-greens-formula From the MIT 

openCourseWare 

- https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-ii-second-

order-constant-coefficient-linear-equations/frequency-response-and-practical-resonance From the 

MIT openCourseWare  

 

EXAMPLE: TRANSFER FUNCTION OF THE RC CIRCUIT 

 

We now take again into account the RC circuit to find its transfer function:  

 

                                                                                         

 

 

 

 

 

 

We found that the governing equation of the circuit is the following:   
 

𝑣𝑖𝑛 = 𝑣𝐶 + 𝑅𝐶
𝑑𝑣𝑐
𝑑𝑡

 

If we operate the Laplace transform to the quantities of the equation, all time-dependent, we find: 

𝑉𝑖𝑛(𝑠) = 𝑉𝐶(𝑠) + (𝑅𝐶)𝑉𝐶(𝑠)𝑠 − 𝑣𝑐(0
−) 

https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/transfer-system-and-weight-functions-greens-formula
https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-iii-fourier-series-and-laplace-transform/transfer-system-and-weight-functions-greens-formula
https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-ii-second-order-constant-coefficient-linear-equations/frequency-response-and-practical-resonance
https://ocw.mit.edu/courses/mathematics/18-03sc-differential-equations-fall-2011/unit-ii-second-order-constant-coefficient-linear-equations/frequency-response-and-practical-resonance
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Setting the initial condition to zero we can obtain: 

𝑉𝑖𝑛(𝑠) = 𝑉𝐶(𝑠)(1 + 𝑅𝐶𝑠) 
 

The transfer function from the input to the voltage across the capacitor is: 

𝑉𝐶(𝑠)

𝑉𝑖𝑛(𝑠)
=

1

(1 + 𝑅𝐶𝑠)
 

 

From this, we can also find the voltage across the resistor since: 

𝑣𝑖𝑛 = 𝑣𝐶 + 𝑣𝑅 
That in the Laplace domain becomes: 

𝑉𝑖𝑛(𝑠) = 𝑉𝐶(𝑠) + 𝑉𝑅(𝑠) 

𝑉𝑅(𝑠) = 𝑉𝑖𝑛(𝑠) − 𝑉𝐶(𝑠) 

𝑉𝑅(𝑠) = 𝑉𝑖𝑛(𝑠) (1 −
1

(1 + 𝑅𝐶𝑠)
) 

And then:  
𝑉𝑅(𝑠)

𝑉𝑖𝑛(𝑠)
= (

𝑅𝐶𝑠

1 + 𝑅𝐶𝑠
) 

 

Suppose now that we want to evaluate the response of the system to a step input of amplitude 𝛼; in 

particular we want to evaluate the behavior of the voltage over the capacitor.  

In the Laplace domain we simply multiply, the step by the transfer function and operate the inverse 

Laplace transform:  

 

𝑉𝐶(𝑠) =
𝑉𝐶(𝑠)

𝑉𝑖𝑛(𝑠)
 𝑈(𝑠) =

1

𝑅𝐶 (
1
𝑅𝐶 + 𝑠)

 
𝛼

𝑠
 

 

We can now apply the partial fraction expansion to get the time domain behavior. The poles of the 

system: 

{

𝑝1 = 0

𝑝2 = −
1

𝑅𝐶

 

 

𝑉𝐶(𝑠) =
𝑟1

𝑠 +
1
𝑅𝐶

+
𝑟2
𝑠

 

The value of the two residuals are: 

{
𝑟1 = −𝛼
𝑟2 = 𝛼  
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The time domain expression becomes: 

𝑓(𝑡) = 𝛼 (− 𝑒−(
𝑡
𝑅𝐶
) + 1) 𝑢(𝑡) 

 

 

That is the classical behavior of the capacitor charge. 

 

EXAMPLE: SPRING MASS DAMPER SYSTEM 

 

A classic example of a second order system is the damped mass-spring oscillator. The equilibrium 

equation for the system is the following:  

𝑚𝑥̈ + 𝑐𝑥̇ + 𝑘𝑥 = 𝑔(𝑡) 

 
Where 𝑔(𝑡)  is an input force and we are interested in the output 𝑥(𝑡). Now, if we impose  𝑔(𝑡) =

𝛿(𝑡), an impulsive force as input, and all the initial conditions to zero, we can calculate the transfer 

function of the system:  

𝑚𝑋(𝑠)𝑠2 + 𝑐𝑋(𝑠)𝑠 + 𝑘𝑋(𝑠) = 𝐺(𝑠) 

𝑋(𝑠)(𝑚𝑠2 + 𝑐𝑠 + 𝑘) = 𝐺(𝑠) 

𝐹(𝑠) =
𝑋(𝑠)

𝐺(𝑠)
=

1

(𝑚𝑠2 + 𝑐𝑠 + 𝑘)
=

1

(𝑠2 +
𝑐
𝑚 𝑠 +

𝑘
𝑚)

 

  

Suppose we now apply an unitary sinusoidal signal as input to the system; the behavior of the system 

can be derived computing the inverse Laplace transform of the following expression: 

𝑋(𝑠) =
1

(𝑠2 +
𝑐
𝑚 𝑠 +

𝑘
𝑚)

𝜔

𝑠2 + 𝜔2
  

 

The behavior of the system in this case depends on the value of the parameters and can be found with 

the partial fraction expansion.  
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If we use the parameters:  

 

{
𝑚 = 10
𝑐 = 10
𝑘 = 5

 

We get the transfer function:  

𝑋(𝑠) =
1

𝑠2 + 𝑠 + 0.5
 

TRANSFER FUNCTIONS FORMULATIONS 

 

We introduced a transfer function in the form of a rational function of 𝑠; for these kind of functions 

the factorization of numerator and denominator results in the pole-zero form of the transfer function: 

𝐻(𝑠) =
∏ (𝑠 − 𝑧𝑖)
𝑍
𝑖=0

∏ (𝑠 − 𝑝𝑖)
𝑃
𝑖=0

 

 

An alternative formulation,which highlights the value of the transfer function for 𝑠 = 0 is the DC-

Gain form of the transfer function, of the form: 

𝐻(𝑠) = 𝐾
∏ (𝑠/𝑧𝑖 − 1)
𝑍
𝑖=0

∏ (𝑠/𝑝𝑖 − 1)
𝑃
𝑖=0

 

 

with particular attention to the denominator, assuming that the transfer functions are causal, we define 

two different important forms of the transfer functions, that will be deeper investigated in the 

following sections: 

 First order transfer function: 
𝑁(𝑠)

(𝜏𝑠+1)
 the coefficient 𝜏 is called time constant and gives an 

indication of how fast a system reacts to the input; in particular, we know from the partial 

fraction expansion, that the time constant will characterize the associated time domain 

evolution of the system; the bigger the time constant, the slower the exponential growth 

(decay) of the system. 

 Second order transfer function: 
𝑁(𝑠)

(𝑠2+2𝜔𝜁𝑠+ 𝜔2)
 in the case of a second order transfer 

function, we define two different parameters: the natural frequency 𝜔 is the absolute value of 

each complex conjugate poles that generate the second order denominator, while the damping 

ratio 𝜁 is an indication of how much the complex poles are ‘far’ from the imaginary axis. In 

fact, the angle 𝜃 between the poles and the real axis is equal to:  𝜃 = cos−1 𝜁.  

In terms of the quality of the system’s response, the natural frequency indicates at which 

frequency the system oscillates when it is free to evolve, while the damping ration is a measure 

of the attitude of the system to dissipate energy. A low damping factor means that the system 

dissipates very few energy for every oscillation and for this reason, it is able to oscillate for 

long time (theoretically forever if 𝜁 = 0) without external inputs.  
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Useful links:  

About time constants:  

https://www.facstaff.bucknell.edu/mastascu/eLessonsHTML/SysDyn/SysDyn3TCBasic.htm  

 

About second order systems : 

https://www.facstaff.bucknell.edu/mastascu/eControlHTML/SysDyn/SysDyn2.html  

http://www.ece.rutgers.edu/~gajic/psfiles/chap6.pdf  from Rutgers University  

 

most of the previously suggested textbooks treats the argument  

 

DISCRETE TIME TRANSFER FUNCTION  

 

A discrete time transfer function is the Z-transform of a discrete time impulse response; it takes the 

form: 

𝐻(𝑧) =
𝑌(𝑧)

𝑋(𝑧)
 

The 𝐻(𝑧) is always a rational function of 𝑧 for a LTI system. The degree of 𝑌(𝑠) is always greater or 

equal to the degree of 𝑋(𝑠) for a causal system. We can write: 

𝑌(𝑧) = 𝐻(𝑧)𝑋(𝑧) 

A discrete time transfer function can be calculated starting from a continuous time transfer function 

once a sampling time 𝑇 is fixed. An example is given in the following. 

EXAMPLE: FROM CONTINUOUS TIME TRANSFER FUNCTION TO DISCRETE TIME TRANSFER FUNCTION 

 

Consider again the transfer function: 

𝑋(𝑠) =
1

𝑠2 + 𝑠 + 0.5
 

Now we want to compute the discrete time transfer function related to the continuous one with the 

sampling time 𝑇 = 0.001.  

With the command c2d in matlab we get: 

https://www.facstaff.bucknell.edu/mastascu/eLessonsHTML/SysDyn/SysDyn3TCBasic.htm
https://www.facstaff.bucknell.edu/mastascu/eControlHTML/SysDyn/SysDyn2.html
http://www.ece.rutgers.edu/~gajic/psfiles/chap6.pdf
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We can rewrite the transfer function as (using the usual symbols 𝑦 for the output and 𝑢 for the input): 

𝐹(𝑧) =
𝑌(𝑧)

𝑈(𝑧)
=
(4.998)10−7 𝑧−1 + (4.998)10−7 𝑧−2

1 − 1.999𝑧−1 + 0.999𝑧−2
=
𝑁(𝑧)

𝐷(𝑧)
 

We can now derive a difference equation that represents the transfer function; we write: 

𝑌(𝑧)𝐷(𝑧) = 𝑈(𝑧)𝑁(𝑧) 

The discrete time equivalent of this expression is: 

𝑦(𝑛) − 1.999𝑦(𝑛 − 1) + 0.999𝑦(𝑛 − 2) = (4.998)10−7 𝑢(𝑛 − 1) + (4.998)10−7𝑢(𝑛 − 2) 
 

And so we get the expression for the output at the time instant 𝑛: 

𝑦(𝑛) = 1.999𝑦(𝑛 − 1) − 0.999𝑦(𝑛 − 2) + (4.998)10−7 𝑢(𝑛 − 1) + (4.998)10−7𝑢(𝑛 − 2) 

This expression shows that the behavior of the system is given not only by the present input, but also 

by the past inputs and outputs; if we want to know the output at a time 𝑛 we must know the previous 

two inputs and outputs of the system.  

 

Useful links:  

 

http://techteach.no/publications/discretetime_signals_systems/discrete.pdf from TechTeach 

about discrete time transfer functions and discrete systems  

 

http://techteach.no/publications/discretetime_signals_systems/discrete.pdf
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FROM STATE SPACE TO TRANSFER FUNCTION 

 

We can obtain the transfer function of the system starting from the state space representation by 

taking the Laplace transform of the two equations ; from the first we get: 

𝑠𝑿(𝑠) − 𝒙(0) = 𝐴𝑿(𝑠) + 𝐵𝑼(𝑠) → (𝑠𝐼 − 𝐴)𝑿(𝑠) = 𝐵𝑼(𝑠) + 𝒙(0) 

From which we get the expression for the states in the 𝑠 domain: 

𝑿(𝑠) = (𝑠𝐼 − 𝐴)−1𝐵𝑼(𝑠) + (𝑠𝐼 − 𝐴)−1𝒙(0) 

By substituting this expression in the output expression for the system we get: 

𝒀(𝑠) = 𝐶((𝑠𝐼 − 𝐴)−1𝐵𝑼(𝑠) + (𝑠𝐼 − 𝐴)−1𝒙(0)) + 𝐷𝑼(𝑠) 

If the initial conditions vanish and we divide the output by the input: 

𝑮(𝑠) =
𝒀(𝑠)

𝐷𝑼(𝑠)
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 

The derivation of the 𝑧 domain transfer function is the same, taking into account that in this domain 

we have: 

𝒙(𝑘 + 1) → 𝑿(𝑘)𝑧 

BEHAVIORAL ANALYSIS 
 

The behavioral analysis is the study of the characteristics of the response of a system when it is 

stimulated by an input signal or when it is free to evolve in time without external inputs.  

FREE RESPONSE AND FORCED RESPONSE 

 

In both the two main LTI systems descriptions, i.e. transfer functions and state space formulation, we 

can observe that the output of a system can be derived from the contributions of two separated 

stimuli, which are the inputs and the initial conditions (states values at 𝑡 = 𝑡(0)) of the system. 

Starting from this observation we can exploit the linearity principle to assert that the generic 

response of a system is given by the sum of two terms: 

 Free response: is the output of the system when it evolves without external inputs 

 Forced response: is the output of the system with a given input and with null initial conditions 

In particular the free response is fundamental for the characterization of a system; the natural modes 

are the characteristics evolutions the free response of the system.    

These modes will be real functions of time 𝑚(𝑡), and we are particularly to their asymptotic behavior; 

a mode can be: 

 Convergent: lim
𝑡→∞

|𝑚(𝑡)| = 0 

 Bounded: 0 < |𝑚(𝑡)| < 𝑀  
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 Divergent:  lim
𝑡→∞

|𝑚(𝑡)| > 𝑀          ∀ 𝑀 ∈ ℝ 

The natural modes can be studied both through the Laplace domain representation of the system 

through the state space representation. 

FREE RESPONSE FROM THE STATE SPACE  

The free response can be evaluated from the state space both in continuous and discrete time; in the 

following the regarding basic concepts will be shown.  

 

COMPUTING THE FREE EVOLUTION FROM THE STATE SPACE 

 

Suppose we are dealing with a system with no input applied, of which we want to consider the free 

evolution; the equation that we are interested in is the following: 

𝒙̇(𝑡) = 𝐴𝒙(𝑡) 

Taking the Laplace transform, we obtain: 

𝑠𝑿(𝑠) − 𝒙(0) = 𝐴𝑿(𝑠) → 𝑿(𝑠) = (𝑠𝐼 − 𝐴)−1𝒙(0) 

The term (𝑠𝐼 − 𝐴)−1, already appeared in the previous, is called resolvent.  

If we want to compute the value of the states in the time domain, we have to apply the inverse Laplace 

transform to the expression and get: 

𝒙(𝑡) = ℒ−1{(𝑠𝐼 − 𝐴)−1}𝒙(0) 

𝒙(𝑡) = 𝛷(𝑡)𝒙(0) 

Where we denoted: 

ℒ−1{(𝑠𝐼 − 𝐴)−1} = 𝛷(𝑡) 

The matrix 𝛷(𝑡) is called state-transition matrix, and maps the values of the states from the initial 

condition  𝒙(0) to the value that they assume at the time 𝑡.  

For the discrete time formulation, the calculation of the evolution of the state vector is simpler, since 

it only implies the discrete iteration of the state-space mapping until the desired time step is reached. 

 

Useful links  

 

More about the state transition matrix: 

http://web.mit.edu/2.14/www/Handouts/StateSpaceResponse.pdf From MIT website 

https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-

and-control-spring-2011/readings/MIT6_241JS11_chap11.pdf From MIT website 

“Modern control systems” ninth edition, R.C. Dorf, R.H. Bishop, Prentice Hall  

“System dynamics” K. Ogata, Prentice Hall   

 

http://web.mit.edu/2.14/www/Handouts/StateSpaceResponse.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/MIT6_241JS11_chap11.pdf
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-241j-dynamic-systems-and-control-spring-2011/readings/MIT6_241JS11_chap11.pdf
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“Fundamentals of linear state space systems”, John Bay, McGraw Hill, 1998  

  

MATRIX EXPONENTIAL 

 

We can arrange the mathematical formulation of the state space system to get a notation that is similar 

to the one of a simple differential equation in the following way:   

Starting from the identity (that holds if the series is convergent): 

(𝐼 − 𝑀)−1 = 𝐼 +∑𝑀𝑛

∞

𝑛=1

 

We can write the resolvent as: 

(𝑠𝐼 − 𝐴)−1 =
1

𝑠
(𝐼 −

𝐴

𝑠
)
−1

=
𝐼

𝑠
+∑

𝐴𝑛

𝑠𝑛+1

∞

𝑛=1

 

It leads us to the expression: 

𝛷(𝑡) = ℒ−1{(𝑠𝐼 − 𝐴)−1} = 𝐼 +∑
(𝑡𝐴)𝑛

𝑛!

∞

𝑛=1

 

If we now recall the exponential power series: 

𝑒𝑎𝑡 = 1 +∑
(𝑡𝑎)𝑛

𝑛!

∞

𝑛=1

 

We note that it takes the same form of the 𝛷(𝑡) expansion, with the difference that in this last case the 

therms are matrices instead of scalars.  

So, given the definition of matrix exponential: 

𝑒𝑀 =  𝐼 +∑
𝑀𝑛

𝑛!

∞

𝑛=1

   

The state transition matrix can be written like follows: 

𝛷(𝑡) = 𝑒𝐴𝑡 

With this result the solution of the vector equation: 

𝒙̇(𝑡) = 𝐴𝒙(𝑡) 

Can be written in the following form, in analogy with the the scalar case: 

𝒙(𝑡) = 𝑒𝐴𝑡𝒙(0) 

This result can be extended to discrete systems: 

𝑥(𝑘 + 1) = 𝑥(𝑘)𝑒(𝑡𝑘+1−𝑡𝑘)𝐴 
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The difference between the two time instants equals the sampling time of the system 𝑇𝑠; thus, we get: 

𝑥(𝑘 + 1) = 𝑥(𝑘)𝑒𝑇𝑠 𝐴 

NATURAL MODES 

 

Given the state space formulation of a system without exogenous inputs: 

𝒙̇ = 𝐴𝒙 

We know that, given an initial state 𝒙(0−), the value of the states at any time instant will be: 

𝒙(𝑡) = 𝑒𝐴𝑡𝒙(0−) 

To introduce the concept we take the case for which A is a diagonal matrix with real distinct 

eigenvalues; in this particular case, the matrix exponential takes the form: 

𝑒𝐴𝑡 = (

𝑒𝜆1𝑡 0 … 0
0 𝑒𝜆2𝑡 … 0
… … … 0
0 0 0 𝑒𝜆𝑛𝑡

) 

In this case the evolution of the system will result to be: 

𝒙(𝑡) =

(

 

𝒙1(0−)𝑒
𝜆1𝑡

𝒙2(0−)𝑒
𝜆2𝑡

…
𝒙𝑛(0−)𝑒

𝜆𝑛𝑡)

  

Every function 𝑚𝑖(𝑡) = 𝑒
𝜆𝑖𝑡  is called natural mode of the system.  

In this case the natural modes are exponential functions, since we supposed that the eigenvalues of 

the A matrices were all real and distinct. Anyway, for a linear time invariant system the eigenvalues 

can be also complex conjugated pairs and can be not distinct (i.e. two eigenvalues can have the same 

value). Given the knowledge of the eigenvalues, we can find the following natural modes for the 

system: 

 

Aperiodic modes: 

Are associated to real eigenvalues; given an eigenvalue 𝜆 of multiplicity 𝑛, there will be 𝑛 associated 

natural modes of the following form: 

𝑚𝑘(𝑡) = 𝑡𝑘𝑒𝜆𝑡 

With 𝑘 going from 0 to 𝑛 − 1.  

This kind of modes have an asymptotic behavior that depends only on the value of the eigenvalue; if 

the eigenvalue is negative, the modes will all be convergent. They will diverge for positive eigenvalue 

and bounded (and equal to one) only if the eigenvalue is null and its multiplicity is one. 

In the following, typical shapes of natural modes of this type with negative 𝜆 are reported: 
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The inverse of 𝜆 is the time constant and represents the rate of decay (or amplification for positive 𝜆) 

of the mode. 

Pseudo-periodic modes: 

Are associated to complex conjugated eigenvalues of the form 𝜆 = 𝜎 + 𝑗𝜔, with multiplicity n .There 

will be 𝑛 modes of the kind: 

𝑚𝑘(𝑡) = 𝑡
𝑘𝑒𝜎𝑡cos (𝜔𝑡 + 𝜑) 
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With 𝑘 going from 0 to 𝑛 − 1.  

This kind of mode shows an oscillation that can be amplified during the evolution if 𝜎 > 0, generating 

a divergent mode, of constant amplitude for 𝑛 = 1 and 𝜎 = 0 (purely imaginary eigenvalues) or 

convergent to zero for 𝜎 < 0.  

In the following some typical shapes of these modes are reported: 

 

 

 

Natural modes for discrete time systems 

When we handle a discrete time system, the shape of the natural modes are the same as the ones of 

the continuous time system, but they are obviously discretized. What changes is the relationship 

between the value of the eigenvalues  and the behavior of the modes; for the discrete systems, we can 

distinguish the following cases based on the position of the eigenvalues in the Z domain: 

 The eigenvalues inside the unitary circle in the complex plane generates convergent modes 

 The eigenvalues outside the unitary circle in the complex plane generates divergent modes 
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 The eigenvalues on the unitary circle in the complex plane generates bounded modes 

 The real eigenvalues generates exponential decay if 0 < 𝜆 < 1 

 Also the real eigenvalues can generate oscillations if −1 < 𝜆 < 0 

 The modes are as fast as they are near to the origin of the plane 

 Complex conjugate eigenvalues generates modes that are faster as the angle with the real axis 

increases 

 Complex conjugate eigenvalues generates modes that are more resonant when the couple of 

eigenvalues is near to the unitary circle 

 

Usefull links:  

  

About natural modes:  

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-

notes/MIT16_07F09_Lec19.pdf from MIT university  

 

“Fundamentals of linear state space systems”, John Bay, McGraw Hill, 1998  

 

EXAMPLE: NATURAL MODES FROM THE SYSTEM MATRIX 

 Consider now the ex4.1 system matrix for an RLC circuit: 

𝐴 = (
−
𝑅

𝐿
−
1

𝐿
1

𝐶
0

) 

We want to find the eigenvalues of the system, but in this case, the matrix is not diagonal. The 

equation of interest is the following: 

𝒙̇ = 𝐴𝒙 

 

We can apply the transformation 𝑇𝒙, where 𝑇 is the matrix that has for columns the eigenvectors of 

A. We get:  

𝑇𝒙̇ = 𝐴𝑇𝒙 

And apply now the inverse transformation:  

 

𝑇−1𝑇𝒙̇ = 𝑇−1𝐴𝑇𝒙 

 

that, for definition returns us the form: 

𝒙̇ = 𝑈𝒙 

 

Where 𝐿  is the diagonal matrix that contains only the eigenvalues of the A matrix; in our case 

substituting the numerical values for R,L and C we get:  

 

https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec19.pdf
https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-07-dynamics-fall-2009/lecture-notes/MIT16_07F09_Lec19.pdf
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𝑈 = 107 (
−9.8990 0

0 −0.1010
) 

 

Now we can state that:  

 

𝑒𝑈𝑡 = (𝑒
−9.8990∗107𝑡 0

0 𝑒−0.1010∗10
7𝑡) 

 

So the natural modes of the system are: 

𝒙(𝑡) = (
𝒙1(0−)𝑒

−9.8990∗107𝑡

𝒙2(0−)𝑒
−0.1010∗107𝑡

)  

 

We see that the modes are both exponentially convergent.  

 

FREE RESPONSE FROM THE TRANSFER FUNCTION 

 

From the theory, we know that when we apply the inverse Laplace transform to a transfer function, 

the kind of time domain functions that we find are always combination of exponentials and sinusoidal 

functions; in fact, the poles and the relative residues of the transfer functions are always real or 

complex conjugated poles.   

Consider now the expression (𝑠𝐼 − 𝐴) ; since it represents a square matrix, we can calculate its 

determinant, a polynomial of the 𝑠 variable: 

𝑃(𝑠) = det (𝑠𝐼 − 𝐴) 

by imposing the value of the polynomial equal to zero, we can find its roots, or rather, the eigenvalues 

𝜆 of the matrix 𝐴: 

𝑃(𝑠)|𝑠=𝜆 = 0 

Since 𝐴 is a real value matrix, its eigenvalues must be real or complex conjugated pairs.  

The values of the eigenvalues are strictly related to the poles of the transfer function that is obtained 

from the state space representation, since the denominator of the transfer function is related to the 

value of (𝑠𝐼 − 𝐴).   

Therefore, the responses of system, given a transfer function, will show the same qualitative behavior 

of the natural modes.  

The natural modes can be found also directly in the Laplace domain by taking into account the initial 

conditions of the transformed quantities when we manipulate the differential equation that holds the 

system and operating then the inverse Laplace transform.  

All the considerations also hold for discrete time systems. 

EXAMPLE: NATURAL MODES AND TRANSFER FUNCTION 
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Now we derive the transfer function for the RLC circuit with the input and the output specified in the 

ex. 4.1; we must use the formula: 

𝐺(𝑠) =
𝑌(𝑆)

𝑈(𝑆)
= 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 

Using the corresponding numerical values for the matrices, we obtain: 

𝐺(𝑆) =
1014

𝑠2 + 108𝑠 + 1014
 

For which the poles are: 

𝑝1 = −9.8990 ∗ 10
7 

𝑝2 = −0.1010 ∗ 107 

 
Coincident with the state matrix eigenvalues. 

 

FORCED RESPONSE 

 

Among all the possible realizations of the forced response of a LTI system, in the following we 

expose some basic concepts about responses of particular interest; among them, one must include 

also the impulse response, already mentioned in the previous. 

 

STEP RESPONSE 

 

The step response is the way the system react to the application of a step signal while all the initial 

conditions are null.   

Even if the step signal is constant for 𝑡 > 𝑡(0), this kind of response gives an almost exhaustive 

information about the system characteristics, since the ideally infinite derivative of the input for  

𝑡 = 𝑡(0) stimulates the system with an high frequency content.  

Even if the characteristics of the step response is useful to evaluate the performance of a feedback 

control system, they can already be defined, with the hypothesis that the system’s output will be 

constant and proportional to the step amplitude after a certain time interval has passed (that is, a 

steady state is reached): 

 Overshoot: is defined as the difference between the peak value of the impulse response and 

the amplitude of the input step, normalized with respect to the amplitude of the 

step:             𝑠̂ =
𝑦𝑟𝑒𝑠−𝑦𝑠𝑡𝑒𝑝

𝑦𝑠𝑡𝑒𝑝
 

 Rise time: is a measure of how the system is able to track a fast input signal; it is defined as 

the time interval needed by the system to pass from 10% to 90% of the final steady state 

value. If the response oscillates around the final value before the steady state is reached, then 

the rise time is the time needed to pass from 0% to 100% of the final steady state value. 
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 Settling time: with reference to a percentage value 𝛼 (5%, 10%) of the steady state value, is 

the time needed by the system to have its response bounded within a range of ±𝛼 around the 

steady state value  

POLYNOMIAL RESPONSE  

 

The polynomial response of order 𝑘 is the response of a system to inputs of the form: 

𝑢𝑘 =
𝑡𝑘

𝑘!
 

In particular the response to the ramp and to the parabolic input (first and second order 

respectively) are usually taken into account to evaluate the system’s characteristics. 

 

THE TRANSFER FUNCTION IN STEADY STATE: FREQUENCY RESPONSE 

 

The transfer function makes possible to calculate the evolution of a system when an input signal is 

applied. This gives us information about the whole trend of the output.  

From the ODE theory, we know that after a certain time, the response of the system will get a steady 

state (or will diverge), since every sinusoidal component of the input will be found in the output 

with the same frequency, but with amplitude and phase modified by the action of the system.  

The information about amplification and phase delay of each component can be found in the transfer 

function if it is evaluated in the frequency domain rather than in the Laplace domain. This kind of 

representation is useful since allow to evaluate the rejection/amplification characteristics of a system, 

in particular with the aid of the Bode diagrams, that will be discussed in the next sections. The 

expression of the transfer function in steady state is  

𝐻(𝑗𝜔) =
𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
 

and represents the Fourier Transform of the impulse response. It is called frequency response of the 

system. 

The rational function’s absolute value and phase are respectively the amplification and the phase 

delay that an input sinusoidal function experiences when is transformed by the system.   

 

Useful links:  

About transient and steady state response:  

http://www.ece.rutgers.edu/~gajic/psfiles/chap6.pdf  from Rutgers University  

 

About step response:  

http://lpsa.swarthmore.edu/Transient/TransInputs/TransStepTime.html from Swarthmore College 

 

About General system’s responses:  

http://www.mne.psu.edu/cimbala/me345/Lectures/Dynamic_systems.pdf  From Penn state 

University 

 

http://www.ece.rutgers.edu/~gajic/psfiles/chap6.pdf
http://lpsa.swarthmore.edu/Transient/TransInputs/TransStepTime.html
http://www.mne.psu.edu/cimbala/me345/Lectures/Dynamic_systems.pdf
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Most of previously suggested textbooks treat the argument.  

 

EXAMPLE: FROM TRANSFER FUNCTION TO FREQUENCY RESPONSE: 

 

We take the transfer function:  

𝑋(𝑠) =
1

𝑠2 + 𝑠 + 0.5
 

We now apply to the system the input signal:  

𝑔(𝑡) = sin (2𝜋𝑡) 

The input has pulsation 𝜔 = 1.   

We can evaluate the steady state response of the system to the input by substituting the Laplace 

variable with the 𝑗𝜔 term and get: 

𝑋(𝑗𝜔) =
1

−𝜔2 + 𝑗𝜔 + 0.5
 

 

Once we fix a pulsation, we obtain a complex vector. We put 𝜔 = 1 to evaluate the response of the 

system to our input:  

𝑋(𝑗) =
1

𝑗 − 0.5
= 0.8944𝑒−𝑗 2.0344  

From this information about the absolute value and the phase of the frequency response we can get 

the output: 

𝑦(𝑡) = |𝑋(𝑗)| sin (2𝜋𝑡 + 𝑎𝑛𝑔𝑙𝑒(𝑋(𝑗))) = 0.8944 sin(2𝜋𝑡 −  2.0344) 

 

 
A simulation shows the evolution of the system and confirms the results and the steady state condition 

that is reached after the transitory.  
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The input (red) and the output (blue)  

 

RELATED MATLAB COMMANDS 

 

A list of useful Matlab functions regarding integral transforms follows; notice that from the command 

window one can type ‘help’ followed by the command name to have almost all the information about 

that function, in particular about outputs and necessary input arguments. 

 ss (…) returns a system representation given the state space matrices 

 impulse (…) plots the behavior of the impulse response given a transfer function 

 conv (…) performs the discrete convolution between two vectors 

 tf (…) also generates a system representation given the transfer function coefficients 

 c2d (…) transforms a Laplace domain transfer function into a Z-domain transfer function 

 d2c (…) performs the inverse operation of c2d 

 zpk (…) formulates a transfer function in form of zeros-poles-gain 

 pole (…) returns the poles of a transfer function 

 ss2tf (…) given a state space representation returns the transfer function 

 tf2ss (…) performs the inverse operation of ss2tf 

 eig(…) finds eigenvector and eigenvalues of a matrix 

 expm(…) calculates the matrix exponential 

 step(…) plots the step response of a given transfer function 

 mineral(…) simplifies transfer functions with common factors within a prefixed tolerance 
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CONTROL SYSTEMS ANALYSIS  

 
By analysis, we mean: observing and classifying the performance of the systems in response to 

changes in inputs and disturbance. Roughly speaking: 

 How fast is it reaching/responding? 

 What is the final value of its response. 

 Is it oscillating? 

 Is it stable? 

 

Since the objective of control is to design systems that have the performance we desire, we need at 

this stage to define clear performance characteristics in response to known input signals. And to 

try to qualitatively describe systems. 

Mainly, there are Analysis techniques in Time Domain and in Frequency Domain, and 

consequently, there are performance characteristics which were defined in Time Domain and in 

Frequency Domain. 

 

TIME DOMAIN CHARACTERISTICS 

 

                                                                               Figure 1- System representation 

The above figure shows the main elements in the analysis procedure: the Input, the System and the 

Output: 

For the input, usually known mathematical signals are used, they are, as already reported: 

1. Impulse Signal: 

The impulse signal has zero width, infinite height and finite area (integral). It is plotted 

with an arrow with a height showing the area of the impulse. 

 

𝛿(𝑡) = 0𝑡 ≠ 0 

∫ 𝛿
∞

−∞

(𝑡)𝑑𝑡 = 1 
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2. Step Signal: 

The Step signal is the integral of the impulse signal, it has a value of zero before the initial 

time, then a sudden change of value (theoretically at zero time), to the value of the 

amplitude. 

𝑢(𝑡) = {
0. . . . . . 𝑓𝑜𝑟𝑡 < 0
1. . . . . . 𝑓𝑜𝑟𝑡 ≥ 0

}𝑈(𝑠) =
𝐴

𝑠
 

 

3. Ramp Signal: 

The ramp signal is the integral of the step signal. Like the step, the ramp has a value of zero 

before the initial time, then it increases gradually and keeps increasing forever. 

𝑟(𝑡) = {
0. . . . . . 𝑓𝑜𝑟𝑡 < 0
𝑡. . . . . . 𝑓𝑜𝑟𝑡 ≥ 0

}𝑅(𝑠) =
𝐴

𝑠2
 

 

4. Sinusoid Signal: 

The Sinusoid signal is useful in frequency response techniques, which will be shown in 

the next section. 

 

Useful links: Input types: http://lpsa.swarthmore.edu/BackGround/ImpulseFunc/ImpFunc.html 

 

Output response is the sum of two responses: forced response and natural response. 

 

 

SYSTEMS RESPONSE CHARACTERISTICS IN TIME-DOMAIN  

 

In time-domain, performance of dynamical systems can be assessed qualitatively through analytical 

solution of differential equations or quantitatively. 

 

QUALITATIVE TECHNIQUES (POLES – ZEROS CONCEPT) 

A pole is a value of the complex frequency variable “s” that makes transfer function become infinity. 

Or can be described as a root of the denominator.  

A zero is a value of “s” that makes the transfer function become zero. Or a root of the nominator. 

 

EXAMPLE 

Find the Poles and the zeros of the following transfer function: 

http://lpsa.swarthmore.edu/BackGround/ImpulseFunc/ImpFunc.html
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4𝑠2 − 20𝑠 + 24

𝑠2 + 3.3𝑠 + 6.4
 

Solution: The roots of the nominator and the denominator can be calculated as follows: 

4𝑠2 − 20𝑠 + 24

𝑠2 + 3.3𝑠 + 6.4
=

4(𝑠 − 3)(𝑠 − 2)

(𝑠 + 1.65 − 𝑗1.9177)(𝑠 + 1.65 + 𝑗1.9177)
 

Then it is easily to find the values of “s” that make the transfer function equals 0, which are: z1=3, 

and z2=2. 

And the values that make the transfer function equals ∞, which are: p1=-1.65+j1.9177, and p2=-1.65-

j1.9177 

 

 

 

 

 

 

 

 

 

MATLAB CODE 

 

POLE-ZERO MAP 
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                                                                Figure 2- Pole-Zero Map (MATLAB function pzmap) 

EXAMPLE 

Evaluating the Response Using the Poles (Qualitative approach) [Nise]: 

Given the System with the transfer function shown in the 

figure, with input R(s) is a unit step. Write the output c(t) 

in general terms, specifying the forced response and the 

natural response of the solution: 

 

SOLUTION 

By inspection, each system pole generates an exponential as part of the natural response. The input’s 

pole generates the forced response. Thus, by performing Partial Fraction analysis: 

𝐶(𝑠) =
𝐾

𝑠
+

𝐾2

𝑠+2
+

𝐾3

𝑠+4
+

𝐾4

𝑠+5
 , where the first part 

𝐾

𝑠
 is the forced response, and the other terms 

represent the natural response because they result from the poles of the system (system dynamics). 

From the inverse Laplace transform, we get: 𝑐(𝑡) = 𝐾1 + 𝐾2𝑒
−3𝑡 + 𝐾3𝑒

−4𝑡 + 𝐾4𝑒
−5𝑡. Again, the 

first part 𝐾1is the forced response, and the other terms are due to the system dynamics (poles). 

SYSTEM STABILITY  

CONCEPT 

Linear Systems response consists a sum of the Forced and Natural responses. 

𝐶𝑡𝑜𝑡𝑎𝑙 = 𝐶𝑓𝑜𝑟𝑐𝑒𝑑 + 𝐶𝑛𝑎𝑡𝑢𝑟𝑎𝑙 

Since in steady-state the response consists only of the forced response. The natural response defines 

the stability of the system. From the Behavioural Analysis section about Natural Modes we know that 

they are of three types: Convergent: if it disappears after some amount of time, Divergent: if it tends 

to infinity, and Bounded: if it does not tend to infinity but it also does not disappear. 

Figure 3- System in pole-zero form 
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So, in general, the stability of the system is related to how its natural response will emerge with time. 

The following example demonstrate this property. 

 

                                                         Figure 4- A simple Pendulum and a pencil standing on its tip 

The pendulum returns to the rest position (θ=0) even after it is moved by an external effect, therefor 

it can be described as a stable system. While in the other case the pen will fall if you try to place it on 

its tip regardless at what angle it is placed, in this case it is an unstable system.  

 

DEFINITION 

 

A simple definition to stability. Related only to Linear Time-Invariant systems (LTI) is the 

following, followed by a more general and detailed definition of stability: 

A linear, time-invariant system is stable if the natural response approaches zero as time approaches 

infinity. 

A linear, time-invariant system is unstable if the natural response grows without bound as time 

approaches infinity. 

A linear, time-invariant system is marginally stable if the natural response neither decays nor grows 

but remains constant or oscillates as time approaches infinity. 

 

FORMAL DEFINITION  

 

In general the definition of stability is divided into two categories: Internal Stability and Bounded 

Input Bounded Output (BIBO) Stability. 

From Part ("Behavioral Analysis"), we found that LTI systems responses are divided into two parts: 

one is due to the input u(t) (zero-state response𝑿𝒛𝒔) and another due to initial state x(t) (zero-Input 

response 𝑿𝒛𝑰) 

The LTI system is represented by a state equation: 𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡),  

The zero-state response is  obtained form the contribution u(t) (no initial condition of the states 𝑿𝒐 =

𝟎). 
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While the zero-input response is obtained from the contribution of 𝑋𝑜(no input is applied u(t)=0). 

Due to superposition, the system response is expressed as a combination of the two responses. 

INTERNAL STABILITY OF CT SYSTEMS 

Now we could say that the concept of internal stability is related to whether the zero-input response 

is bounded for any initial state 𝑋𝑜 or not. 

𝑋𝑧𝐼(𝑠) = (𝑠𝐼 − 𝐴)−1𝑋(0) 

Therefore, the LTI system is internally stable if all the eigenvalues of A have negative real parts, 

and at most one eigenvalue has zero real part. This will grantee that the zero-input response 𝑋𝑧𝐼will 

never grow unbounded with time for any initial condition 𝑋𝑜. 

ASYMPTOTIC STABILITY OF CT SYSTEMS 

The LTI system is asymptotically stable if all the eigenvalues of A have strictly negative real parts, 

which means that all the natural modes are convergent. 

BIBO STABILITY OF CT SYSTEMS 

The BIBO stability is related to obtaining a bounded zero-state response for any bounded input u(t). 

 

form part ("Behavioural Analysis") we obtained an expression of 𝑋𝑧𝑠 and 𝑋𝑧𝐼: 

𝑋𝑧𝑠(𝑠) = (𝐶(𝑠𝐼 − 𝐴)
−1𝐵 + 𝐷)𝑢(𝑠) 

From Previously the relation between the natural modes of the system and the roots of the 

characteristic polynomial 𝑑𝑒𝑡(𝑠𝐼 − 𝐴)we can relate them to the concept of stability. 

The roots of the characteristic polynomial are the eigenvalues of A, or the poles of the transfer 

function 𝐻(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷. 

 

For BIBO, 𝑋𝑧𝑠 contains the characteristic polynomial at the de-numerator, but it also contains 

additional terms in the numerator, which create zeros that can be cancelled with the poles “unstable 

roots” of the characteristic polynomial. 𝐻(𝑠) = 𝐶(𝑠𝐼 − 𝐴)−1𝐵 + 𝐷 =
𝐶∗𝑎𝑑𝑗(𝑠𝐼−𝐴)∗𝐵

𝑑𝑒𝑡(𝑠𝐼−𝐴)
+ 𝐷 

The possibility of pole-zero cancellation makes the internal stability condition more strict than the 

BIBO stability one.  

  

INTERNAL STABILITY OF DT SYSTEMS  

 

Similar to CT system case, the internal stability is related to the zero-input response. 

𝑋𝑧𝐼(𝑧) = (𝑧𝐼 − 𝐴)
−1𝑋(0) 

Therefore, the LTI system is internally stable if all the eigenvalues of A have magnitudes less than 

1, and at most one eigenvalue has a magnitude of 1. This will grantee that the zero-input response 

𝑋𝑧𝐼 will never grow unbounded with time for any initial condition 𝑋𝑜. 



  CONTROL REVIEW 

 

 

 

 

56 

 

ASYMPTOTIC STABILITY OF DT SYSTEMS  

 

The LTI system is asymptotically stable if all the eigenvalues of A have strictly magnitudes less 

than 1, which means that all the natural modes are convergent. 

BIBO STABILITY OF DT SYSTEMS  

 

The BIBO stability is related to obtaining a bounded zero-state response for any bounded input u(k). 

Similarly: 

𝑋𝑧𝑠(𝑧) = (𝐶(𝑧𝐼 − 𝐴)
−1𝐵 + 𝐷)𝑢(𝑧) 

From Previously the relation between the natural modes of the system and the roots of the 

characteristic polynomial 𝑑𝑒𝑡(𝑧𝐼 − 𝐴)we can relate them to the concept of stability. 

The roots of the characteristic polynomial are the eigenvalues of A, or the poles of the transfer 

function 𝐻(𝑧) = 𝐶(𝑧𝐼 − 𝐴)−1𝐵 + 𝐷. 

Similarly to the CT case, there is a possibility of pole-zero cancellation that makes the internal 

stability condition more strict than the BIBO stability one. 

The following figure shows the stability regions for CT and DT systems. 

A is asymptotic stability region, B is stability region and C is unstability region. 

 

CAN A SYSTEM BE BIBO STABLE AND NOT INTERNALLY STABLE? 

Consider the following the example: 

EXAMPLE 
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𝑋̇(𝑡) = [
−1 2
1 0

]𝑋(𝑡) + [
1
0
] 𝑢(𝑡) 

𝑦(𝑡) = [3 −3]𝑋(𝑡) + 𝑢(𝑡) 

The eigenvalues of A are -2 and 1, therefore the system is internally unstable. 

But to analyze the BIBO stability, we need to compute the transfer function H(s) using the formula 

mentioned above.  

 

In this case, the “unstable” pole (+1) is canceled with the zero, therefore the system is BIBO stable. 

 

MATLAB COMMANDS: 

 

P.S. : to cancel the unstable pole with the zero, use the MATLAB function “minreal” with an 

appropriate tolerance (max difference between the pole and the zero to cancel each other): 

 

IMPORTANCE OF STABILITY 

When designing a feedback control system, stability is the first property to be considered. Other 

properties, such as controllability, observability, bandwidth etc. play an important role. But stability 

is the most important one. 
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Since the goal of control design is to obtain systems that have their outputs follow their inputs as 

closely as possible. Unstable systems cannot guarantee such behavior and are not useful in practice. 

Moreover, unstable systems have the amplitude of at least one of the state tends to infinity with time, 

this theoretical result leads in practice to undesirable situations like saturation, or to damage such as 

burning, breaking or explosion. Therefore, not satisfying stability makes it unreasonable to try to 

satisfy other system properties.  

 

 

TESTING TECHNIQUES 

Several techniques are found to evaluate the stability of the system other than checking the locations 

of the poles (or the roots of the characteristic polynomial), such as Routh-Hurwitz and frequency 

response techniques (see part("Frequency Domain Tools")). 

Another tool is the impulse response, it can check the stability of the system since the impulse is a 

bounded signal. Routh-Hurwitz Criterion: Gives information about the number of closed-loop 

systems poles in the left-half plane, the right-half plane and at the𝑗𝜔axis. Without the need to solve 

for the closed-loop system poles. 

FREQUENCY DOMAIN METHODS 
An Important property of LTI systems, is that for sinusoidal inputs, the output is always sinusoidal in 

the steady state case. Moreover, the output frequency is the same as the input. 

The difference in the two signals is in the amplitude, and the phase. 

 

Useful links: Refer to [Nise, Ch10] for mathematical representation of the frequency response of a 

system. 

Video lecture with an introduction of frequency response: 

https://www.youtube.com/watch?v=_eh1conN6YM 

 

REPRESENTATION AND PLOTTING "BODE" 

The LTI system in this framework as a magnitude and phase:  

Figure 5- LTI systems response to sinusoid signals 

https://www.youtube.com/watch?v=_eh1conN6YM
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𝐺(𝑠)𝑠=𝑗𝜔 = 𝐺(𝑗𝜔) = 𝑀𝐺(𝑗𝜔) < 𝜙𝑔(𝑗𝜔), where 𝑀𝐺(𝑗𝜔)is the scaling in the amplitude of the input 

signal and 𝜙𝐺(𝑗𝜔)is the shift in time. 

Since they are both functions of the frequency, each can be plotted with the frequency, each in a 

separate figure. 

 

EXAMPLE 

Plot the Magnitude and phase frequency response for the system represented by the following transfer 

function: 𝐺(𝑠) =
1

𝑠+2
. 

SOLUTION 

𝐺(𝑗𝜔) =
1

𝑗𝜔+2
=

2−𝑗𝜔

𝜔2+4
, this is a complex function that can be factorized into magnitude and phase: 

|𝐺(𝑗𝜔)| = 𝑀(𝜔) =
1

√𝜔2+4
, and the angle𝜙(𝜔) = −𝑡𝑎𝑛−1(𝑤 2⁄ ) 

 

The two functions can be plotted as in the following figure (with semilog scale and the magnitude in 

Decibles. 

 

 

Figure 6- System phase as a function of frequency 
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However, the analytic computation of the frequency response is tedious and time consuming specially 

for large systems, it can be done easily by plotting the Asymptotic plot instead (refer to the link after), 

or by exploiting a software tool to perform the plot. 

 

MATLAB CODE TO PLOT THE FREQUENCY RESPONSE 

 

 

This produces the following figure. 

Figure 7- System magnitude as a function of frequency 
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Figure 8- Bode Diagram for G=1/(s+2) 

 

Useful links: How to plot Bode Diagram (sketch by hand), with a software plotter: 

http://www.onmyphd.com/?p=bode.plot 

 

 

Another way to represent the frequency response: the Nyquist Plot: which is a form of Polar Plot. 

 

WHAT IS A POLAR PLOT? 

The complex function of the LTI system 𝐺(𝑗𝜔) can be also represented in real and imaginary form: 

𝐺(𝑠)𝑠=𝑗𝜔 = 𝐺(𝑗𝜔) = ℜ𝐺(𝑗𝜔) + 𝑗ℑ𝐺(𝑗𝜔) (Complex Form). 

The Polar Plot is obtained by plotting the imaginary part 𝑗ℑ𝐺(𝑗𝜔) versus the real part ℜ𝐺(𝑗𝜔) (could 

be also expressed in Polar Form too) for each frequency value. 

 

EXAMPLE 

Given the open-loop continuous time transfer function: 𝐺𝐻(𝑠) =
1

𝑠+3
 

 

Letting 𝑠 = 𝑗𝜔and rewriting in the polar form (|𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒|∢𝑝ℎ𝑎𝑠𝑒). We get: 

𝐺𝐻(𝑗𝜔) =
1

𝑗𝜔 + 3
=

1

√𝜔2 + 9
∢ − 𝑡𝑎𝑛−1

𝜔

3
 

Then substitute for several frequency values, for 𝜔 = 0,𝜔 = 3, 𝑎𝑙𝑠𝑜 𝜔 → ∞ 

𝐺𝐻(𝑗0) =
1

√9
∢0𝑜 = 0.333∢0𝑜 

http://www.onmyphd.com/?p=bode.plot


  CONTROL REVIEW 

 

 

 

 

62 

 

𝐺𝐻(𝑗3) =
1

√18
∢ − 45𝑜 = 0.2357∢ − 45𝑜 

𝑙𝑖𝑚
𝜔→∞

𝐺𝐻 (𝑗𝜔) = 0∢ − 90𝑜 

 

 
Figure 9- Polar plot for GH(s)=1/(s+3) 

 

MATLAB CODE FOR POLAR PLOTTING 

 

Useful links: Useful expelanation of Nyquist/Polar plots:   

http://www.facstaff.bucknell.edu/mastascu/econtrolhtml/freq/freq6.html 

 

http://www.facstaff.bucknell.edu/mastascu/econtrolhtml/freq/freq6.html
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Next, We will see how the Polar Plot and some properties of complex functions can exploited to 

develop Nyquist Stability Theory. 

 

NYQUIST ANALYSIS 

The main purpose of Nyquist analysis, is to determine the absolute and relative stability of closed-

loop control systems. This can be obtained from plotting the frequency response of the open-loop 

frequency response transfer function GH(ω), after putting the feedback system in the form: 

To understand Nyquist method, let us address the topic of complex functions. 

 

COMPLEX FUNCTIONS 

A real function of a real variable is easily graphed on a single set of coordinate axes. For example, 

the real function f(x), x real, is easily plotted in rectangular coordinates with x as the abscissa and f(x) 

as the ordinate. For example, the following is a plot of the function 𝑓(𝑥) = 𝑥2 − 𝑥 − 2: 

 

                                                                                  Figure 11- Plot of f(x)=x^2-x-2 

On the other hand, a complex function of a complex variable, such as the transfer function P(s), 

cannot be plotted on a single set of coordinates. 

Figure 10- General feedback system 
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The complex variable 𝒔 = 𝝈 + 𝒋𝝎 depends on two independent quantities, the real and imaginary 

parts of s. Hence s cannot be represented by a line. The complex function P(s) also has real and 

imaginary parts. It too cannot be graphed in a single dimension. 

To plot P(s) with 𝑠 = 𝜎 + 𝑗𝜔 , two two-dimensional graphs are required. The first is a graph of jω 

versus σ called the s-plane, the same set of coordinates as those used for plotting pole-zero maps in 

part ( ). The second is the imaginary part of P(s) (Im{P}) versus the real part of 

P(s) (Re{P}) called the P(s)-plane. As the following: 

 

                                                                     Figure 12- mapping from s-plane to P(s)-plane 

This is referred to as mapping, as shown with the point s0 in the s-plane is mapped into a point P(s0) 

in the P(s)-plane, by the function P. 

 

EXAMPLE 

For the function 𝑃(𝑠) = 𝑠2 + 1, the point 𝑠0 = 2 + 𝑗4 is mapped into the point 𝑃(𝑠0) = 𝑃(2 + 𝑗4) =

(2 + 𝑗4)2 + 1 = −11 + 𝑗16 

 

                                                               Figure 13- Mapping of the point s0 into the P(s)-plane 

To continue with the theory, let us define some concepts regarding the mapping. 

 

DERIVATIVE 

Defined by: (
𝑑𝑃

𝑑𝑠
)
(𝑠=𝑠0)

= 𝑙𝑖𝑚
𝑠→𝑠0

[
𝑃(𝑠)−𝑃(𝑠0)

𝑠−𝑠0
], if the derivative exists at all points in a region of the s-

plane (the limit is finite and unique), then P is analytic in that region. 
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Transfer functions of practical physical systems, are analytic in the finite s-plane except at the poles 

of P(s). 

  

SINGULAR POINTS 

A point at which P(s) is not analytic is a singular point or singularity of P(s). A pole of P is a singular 

point. 

 

CLOSED CONTOURS 

A closed contour in a complex plane is a continuous curve beginning and ending at the same point. 

 

                                                                                       Figure 14- A closed contour 

ENCLOSURE 

All points to the right of a contour as it is traversed in a prescribed direction are said to be enclosed 

by it. 

 

Figure 15- Convension for Enclosure 

CLOCKWISE DIRECTION 

A clockwise (CW) traverse around a contour is defined as the positive direction. 
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Figure 16- CW and CCW directions 

 

ENCIRCLEMENTS 

 

A closed contour in the P-plane is said to make n positive encirclements of the origin if a radial line 

drawn from the origin to a point on the P curve rotates in a clockwise (CW) direction through 360° 

in completely traversing the closed path. If the path is traversed in a counterclockwise (CCW) 

direction, a negative encirclement is obtained. The total number of encirclements No is equal to the 

CW minus the CCW encirclements. 

PROPERTIES OF THE MAPPING P(S)  

 

All mappings P(s) considered here have the following properties: 

1. P is a single-valued function. That is, every point in the s-plane maps into one and only one point 

in the P-plane. 

2. s-plane contours avoid singular points of P. 

3. P is analytic except possibly at a finite number of points (singularities) in the s-plane. 

4. Every closed contour in the s-plane maps into a closed contour in the P-plane. 

5. P is a conformal mapping. This means that the direction of and the angle between any two 

intersecting curves at their point of intersection in the s-plane are preserved by the mapping of these 

curves into the P-plane. 

6. The mapping P obeys the principle of arguments. That is, the total number of encirclements 𝑁0of 

the origin made by a closed contour in the P-plane, mapped from a closed s-plane contour, is equal 
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to the number of zeros 𝑍0 minus the number of poles 𝑃0 of P enclosed by the the s-plane (or z-plane) 

contour. That is, 

𝑁0 = 𝑍0 − 𝑃0 

7. If the origin is enclosed by the P contour, then 𝑁0 > 0. If the origin is not enclosed by the P 

contour, then𝑁0 ≤ 0 . That is, 

𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 → 𝑁0 > 0 

𝑛𝑜𝑡𝑒𝑛𝑐𝑙𝑜𝑠𝑒𝑑 → 𝑁0 ≤ 0 

The sign of𝑁0is easily determined by shading the region to the right of the contour in the 

prescribed direction. If the origin falls in a shaded region,𝑁0 > 0; if not,𝑁0 ≤ 0. 

 

SYSTEMS STABILITY  

 

From the previous part, we reached a conclusion that computing the poles of closed-loop systems 

gives information about its stability (BIBO stability). Shortly, if there is at least one pole at the right-

half of the s-plane, the closed-loop system is considered unstable. 

In the following part, we will see how the Polar plot of the open-loop system transfer function can 

have information about the stability of the closed loop system. 

A closed-loop transfer function can be written in the form: 
𝐺(𝑠)

1+𝐺(𝑠)𝐻(𝑠)
, see figure 7. 

 

Where 𝐺(𝑠)𝐻(𝑠)is called the open-loop function (or the Loop function). We can express it as a ratio 

of polynomials, and its poles and zeros are assumed to be known to us. It can be open-loop stable or 

unstable, we are interested in the stability after we close the loop. 
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The denominator of the closed loop system can be expressed as: 1 +
𝑁(𝑠)

𝐷(𝑠)
=

𝐷(𝑠)+𝑁(𝑠)

𝐷(𝑠)
, Now  

We want to know: How many zeros of 1 + 𝐺(𝑠)𝐻(𝑠)are in the right-half of the s-plane? 

 

To find out, we apply the Principle of Arguments, we will perform a mapping through 1 +

𝐺(𝑠)𝐻(𝑠) for a contour. 

 

Figure 17- Mapping through 1+GH 

The mapping plane is called the W-plane. 

What is the contour we want to map with1 + 𝐺(𝑠)𝐻(𝑠)? 

Of course the answer should be: a contour that encircles the entire right-half of the s-plan. 
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The contour starts from the origin, goes along the imaginary axis from 𝜔 = 0 to 𝜔 → ∞, then forms 

half a circle of a radius 𝑅 → ∞ to the point 𝜔 → −∞, then along the imaginary axis until it reaches 

the origin. 

 

By applying the principle of arguments, we can determine the condition of stability of the closed-

loop system, That is, the total number of encirclements 𝑁0 of the origin made by the mapping or the 

contour shown above close in the W-plane, is equal to the number of zeros 𝑍0 minus the number of 

poles 𝑃0 of P enclosed by the the s-plane (or z-plane) contour. That is, 

𝑁0 = 𝑍0 − 𝑃0 

 

If we selected the open-loop function𝐺(𝑠)𝐻(𝑠)instead of 1 + 𝐺(𝑠)𝐻(𝑠), the critical point becomes 

(-1,0) instead of the origin, since the whole mapped contour is shifted to the left. 

 

Since the contour cannot pass through the open-loop poles, it must detour around each open-loop 

pole lying on its path. As shown below: 
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Figure 18- Nyquist contour with points on the path 

For sketching Nyquist plot by hand, follow the following links and references: 

 

EXAMPLE 

For the following system. Plot the Nyquist diagram, and use the criteria to determine whether it is 

stable or not. 

 

Figure 19- A feedback system 

MATLAB CODE 
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Nyquist Plot for positive frequency values only: 

 

Figure 20- Nyquist diagram for the feedback system in figure 16 (positive frequencies only) 
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Nyquist Plot for all positive and negative frequency values: 

 

Figure 21- Nyquist diagram for the feedback system of figure 16, (negative and positive frequencies) 

Useful links: 

- Schaum’s Outline of Theory and Problems of Feedback and Control Systems, Joseph J. Distefano, 

Allen R. Stubberud, Ivan J. Williams, 2nd edition, Chapter 11 Nyquist Analysis. Contains Many 

Examples of Sketching Nyquist plot. 

- Control Engineering Lecture, Prof. Madan Gopal, Department of Electrical Engineering, IIT Delhi, 

NPTEL (India), https://www.youtube.com/watch 

v=Rbvau5oXOkg&list=PLghJObT_RyfLmKRT86TquJhG6QuiHZ6Pi&index=36 

 

GAIN MARGIN AND PHASE MARGIN 

Absolute stability means whether system is stable or unstable. But Relative Stability gives the 

degree of stability or how close it is to instability. 

GAIN MARGIN 

It is the factor by which the system gain can be increased before the system reaches to the verge of 

instability. 

Gain margin is always calculated at the frequency at which the phase of the system is -180°, also 

known as phase cross over frequency. 

PHASE MARGIN 

It is the additional amount of phase lag which can be added to the system before the system reaches 

to the verge of instability. 

https://www.youtube.com/watch
https://www.youtube.com/watch
https://www.youtube.com/watch?v=Rbvau5oXOkg&list=PLghJObT_RyfLmKRT86TquJhG6QuiHZ6Pi&index=36
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Phase margin is always calculated at the frequency at which the gain of the system is 1 or 0 dB, also 

known as gain cross over frequency. 

Evaluating Gain and Phase Margins by Bode plots is shown in figure 18. 

 

Figure 22- Evaluating Gain and Phase margins 

The gain margin is found by using the phase plot to find the frequency 𝝎𝑮𝑴where the phase is 

𝟏𝟖𝟎𝒐. At this frequency, we look at the magnitude plot to determine the gain margin, 𝐺𝑀 which is 

the gain required to raise the magnitude curve to 0 dB. 

The phase margin is found by using the magnitude curve to find the frequency 𝝎𝝓𝑴, where the 

gain is 0 dB. On the phase curve at that frequency, the phase margin 𝜙𝑀is the difference between the 

phase value and 180𝑜.  
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EVALUATING GAIN AND PHASE MARGINS BY NYQUIST DIAGRAM 

 

Figure 23- Gain and Phase margins in Nyquist diagram 

Assuming the system is stable (no encirclements of -1), the gain margin is the difference between 

the Nyquist diagram's crossing of the real axis at 
−𝟏

𝒂
 and the - 1 critical point determines the proximity 

of the system to instability. Thus, if the gain of the system were multiplied by 𝒂 units, the Nyquist 

diagram would intersect the critical point. We then say that the gain margin is 𝒂 units, or, expressed 

in dB, 𝑮𝑴 = 𝟐𝟎𝒍𝒐𝒈𝒂. Notice that the gain margin is the reciprocal of the real-axis crossing expressed 

in dB. 

For the phase margin. At point Q', where the gain is unity, a represents the system's proximity to 

instability. That is, at unity gain, if a phase shift of a degrees occurs, the system becomes unstable. 

Hence, the amount of phase margin is a. 

PERFORMANCE SPECIFICATIONS IN THE FREQUENCY DOMAIN 

Given a set of time-domain specifications, how do we specify the frequency response? Consider the 

2nd order system which has the following transfer function: 

, The corresponding loop function is: 𝐿(𝑠) =
𝜔𝑛
2

𝑠(𝑠+2𝜁𝜔𝑛)
, which has the typical plot shown in figure 

21. 
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Figure 24- Magnitude of the frequency response of the loop function 

The crossover frequency 𝜔𝑐 is expressed as a function of the natural frequency 𝜔𝑛and the damping 

ratio 𝜁: 𝜔𝑐 = 𝜔𝑛 ∗ √√1 + 4𝜁4 − 2𝜁2. 

 

Where the closed loop function (referred to as the Complementary Sensitivity Function), T(s), is 

given by: 

𝑇(𝑠) =
𝐿

1+𝐿
=

𝜔𝑛
2

𝑠2+2𝜁𝜔𝑛𝑠+𝜔𝑛
2 , which has a typical bode plot as shown in figure 22. 
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Figure 25- Magnitude of the frequency response of the closed-loop function 

At high frequencies |𝑇(𝑗𝜔)| = |
𝐿(𝑗𝜔)

1+𝐿(𝑗𝜔)
| ≈ |𝐿(𝑗𝜔)|, since 𝐿(𝑗𝜔) ≪ 1. 

At low frequencies |𝑇(𝑗𝜔)| = |
𝐿(𝑗𝜔)

1+𝐿(𝑗𝜔)
| ≈ 1, since 𝐿(𝑗𝜔) ≫ 1. 

And at the middle frequencies (around 𝜔𝑐), the behaviour is determined by the damping ratio 𝜁, where 

the peak value of the sensitivity function is given by 𝑻𝒑 =
𝟏

𝟐𝜻√𝟏−𝜻𝟐
. 
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Figure 26- Magnitude of the frequency response of T(s) for different values of the damping factor 

The crossover frequency 𝜔𝑐 represents the speed of the system, depending on 𝜔𝑛 and 𝜁. Which is 

similar to the resonance frequency 𝜔𝑅 and the bandwidth 𝜔𝐵𝑊 of the complimentary sensitivity 

function. 

The bandwidth is given by: 𝜔𝐵𝑊 = 𝜔𝑛√1 − 2𝜁2 +√2 − 4𝜁2 + 4𝜁4. 

 

CONSTANT MAGNITUDE CIRCLES (M-CIRCLES) 

The magnitude of the closed loop frequency response of a unity feedback system is given by: 

|𝑇(𝑗𝜔)| = |
𝐿(𝑗𝜔)

1+𝐿(𝑗𝜔)
|. 

Plotting lines of constant magnitude in the Nyquist plane gives the M-circles. The intersection of the 

Polar Plot with a particular M-circle yields the value of M at the frequency of 𝐺(𝑗𝜔) at the point of 
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intersection.

 

Figure 27- The M-Circles 

 

The radius of an M-circle is given by: 𝑟𝑎𝑑𝑢𝑖𝑠 = |
𝑀

𝑀2−1
|, and the center is: 𝑐𝑒𝑛𝑡𝑒𝑟 = (

−𝑀2

𝑀2−1
, 0). 

The resonance peak 𝑇𝑝is given by the largest value of M of the M-circles tangent to the polar plot. 

𝑇𝑝 = 𝑀𝑚𝑎𝑥 = 𝑀𝑝. 

 

NICHOLS CHARTS 

It is a modification of the Nyquist and Bode methods. If 𝐺𝐻(𝜔) represents the open-loop frequency 

response function of either a continuous-time or discrete-time system, then 𝐺𝐻(𝜔) plotted on a 

Nichols chart is a contour on a (dB) magnitude versus phase angle plot in rectangular coordinates. 

M-circles on the Nichols plane: 

When the M-circles are plotted on the Nichols plane. They are not circles anymore. They become: 

Closed curves for M>1, and open curves for𝑴 ≤ 𝟏. 
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The black curves are the constant magnitude curves. 

 

PHASE MARGIN AND THE DAMPING FACTOR 

For the same General form of the 2nd order system we can find an expression of the phase margin 

𝜙𝑀, by finding the frequency for |𝐺(𝑗𝜔)| = 1, and substituting the phase angle at that frequency. We 

get: 𝝓𝑴 = 𝒕𝒂𝒏
−𝟏 𝟐𝜻

√−𝟐𝜻𝟐+√𝟏+𝟒𝜻𝟒
. Note that the phase margin is a function of the damping ratio only. 

The function is plotted in figure 25. 

 

Figure 28- Phase Margin from Damping Ratio 

The phase margin is used in control design in frequency domain. 
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FEEDBACK CONTROL AND ITS ADVANTAGES 
A control system is an interconnection of components forming a system configuration that will 

provide a desired system response. It consists of the following parts: 

Process: or a plant, is the system whose input is manipulated to have its output behave as desired. 

 

Controller: A system that manipulates the input of the Process to get the output as desired. 

Actuator: Usually a power amplifier that takes the small signal coming out of the controller. 

 

 

Figure 30- Open-Loop Control System 

In the above configuration, the controller is the solution to the problem: to get a certain output 

(Controlled Variable), what is the right input (called Manipulated Variable) to be produced? 

It is easy to notice that to design such a system, knowledge of how the Process behaves is needed, 

here comes the importance of obtaining the mathematical model of the Process, and the Actuator as 

well. 

It is also noted that after building the controller. It will work well if we guarantee that the “reality” is 

like our mathematical model. But, can we? 

 

 

Figure 31- Open-Loop Control System with presence of disturbances 

Actually we cannot make sure that our model represents the true system, there will always be 

deviations from the computed response due to disturbances by the surrounding environment. This 

Figure 29- The Process 
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deviation can be very large, therefore we need to measure the Process output and feed it back to the 

controller. 

 

Figure 32- Closed-Loop Control System 

The first configuration is called Open-loop control system, while the latter is called Closed-loop 

control system. As seen in block diagram, the measured signal is subtracted from the desired signal 

(the Reference signal), and the control is fed with the error between the two signals. 

With the feedback, the control system is able to reject or “attenuate” the effect of the undesired 

environment conditions (called the Disturbance). 

 

EXAMPLES OF CONTROL SYSTEMS 

- For the following systems write down the general block diagram identifying the main blocks and 

signals of a control system. 

 

EXAMPLE 

Tank Level Control: 

 

Figure 33- Tank level Control System 

This system can be modeled by the following block diagram: 
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Figure 34- Block Diagram of a Tank Level Control System 

In the case the controller is the person (the operator), who keeps monitoring the tank level through 

the gauge display and changes the valve opening accordingly to allow the right amount of the fluid 

to drain, in order to keep a certain tank level. 

The fluid input is considered as a disturbance because it cannot be changed by the controller and can 

have any value. 

It can be noted that the Open-loop version of this system is equivalent of the operator changes the 

valve opening without looking at the tank level gauge. Of course he can never tell if the inlet fluid 

flow increases or decreases. 

 

EXAMPLE 

Remote Antenna Positioning system 

 

Figure 35- Remote Antenna Positioning system 

This system can be modeled by the following block diagram: 
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Figure 36- Block diagram of the Remote Antenna Positioning system 

In this case the controller can be an electronic circuit, or a digital computer which drives the motor to 

eliminate “or reduce” any error between the desired and the measured antenna orientation. 

The wind or any external effector represent the disturbance that change the antenna orientation 

undesirably. The position sensor converts continuously the actual orientation and it feeds it to the 

controller. 

 

PERFORMANCE 

The ability to adjust the transient and steady-state performance is a distinct advantage of feedback 

control systems. 

Obtaining a system response that follows the reference input is not the only objective of introducing 

a controller. But roughly speaking: “how fast” and “how accurate” is the response? 

Performance criteria are various measurable parameters that indicate how good (or bad) the control 

system is. These are divided into transient (moving) and steady-state (not changing) parameters. 

The exact path the controlled variable takes when going from one position to the next is called its 

transient response. Consider the behavior of the antenna in the previous example whose possible 

response is shown in figure 37. 

 

 

Figure 37- A typical step response 
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The antenna is directed to move from 0 to 30°, as shown by the dashed line. This type of command 

(changing instantaneously from one position to another) is called a step change. The actual response 

of the system is shown as a solid line. As you can see, there is a difference between the ideal path of 

the arm and the one it took. One major consideration is how fast the system picks up speed (called 

rise time). The real arm simply cannot move fast enough to follow the ideal path. 

Rise time (T) is usually defined as the time it takes for the controlled variable to go from 10 to 90% 

of the way to its new position. Another transient parameter is over- shoot. Once the arm starts 

moving, its momentum will keep it going right on past where it was supposed to stop. Overshoot can 

be reduced by the controller but usually at the expense of a longer rise time. Settling time (𝑇𝑠) refers 

to the time it takes for the response to settle down to within some small percentage (typically 2-5%) 

of its final value. In this case, it is the time it takes for the oscillations to die out. Rise time, settling 

time, and overshoot are all related; a change in one will cause a change in the others. 

P.S.: The criteria mentioned above: Rise time, Settling time and Overshoot are the criteria for a class 

of linear systems called Second Order systems, which will be treated in part ( ). 

 

Useful links: Modern Control Systems, Dorf & Bishop 11th edition, Chapter 1  

Introduction to Control Systems. Modern Control Technology -  Components and Systems, Kilian 

2nd edition, Chapter 11 Feedback Control Principles. 

 

FIRST ORDER SYSTEMS 

The transfer function of a first order system can be written as: 𝐺(𝑠) =  
𝐾

𝜏𝑠+1
, where K is the steady-

state gain of the system, and 𝜏 is the time constant of the system. 𝜏 =
1

𝑎
. The following figure is the 

step response for the case K=1. 

 

Figure 38- Step response of a 1st order system 
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As shown in the figure, to compute the time constant, draw a tangent of the output (at t=0), the time 

of the intersection with the steady state value (1.0 in this case) gives the value of the time constant. 

Or it is the time for the output response to reach 63% of the final value. 

The time constant represents the speed of the response. And it is equal to the reciprocal of the 

pole location (−𝑎). 

 

SECOND ORDER SYSTEMS 

From Linear Systems Theory, the response of a 2nd order system can be one of the following: 

1- Over-damped response, with two real (distinct) poles −𝜎1, − 𝜎2, and a natual response of two 

exponentials with time constants equal to the reciprocal of the the pole locations. 

𝑐(𝑡) = 𝐾1𝑒
−𝜎1𝑡 + 𝐾2𝑒

−𝜎2𝑡 

2- Underdamped response, with two complex poles −𝜎𝑑 ± 𝑗𝜔𝑑, and a natural response of a damped 

sinusoid with an exponential envelope whose time constant is equal to the reciprocal of the pole’s 

real part, and the radian frequency of the sinusoid (the damped frequency of oscillation) is equal to 

the imaginary part of the poles. 

𝑐(𝑡) = 𝐴𝑒−𝜎𝑑𝑡𝑐𝑜𝑠(𝜔𝑑𝑡 − 𝜙) 

3- Un-damped response, with two imaginary poles at±𝑗𝜔1, and a natural response of a sinusoide 

with radian frequency equal to the imaginary part of the poles. 

𝑐(𝑡) = 𝐴𝑐𝑜𝑠(𝜔1𝑡 − 𝜙) 

4- Critically damped response, with two identical poles at −𝜎1, and a natural response of an 

exponential whose time constant is equal to the reciprocal of the pole location, and anther term which 

is the product of time, t, and an exponential with time constant equal to the reciprocal of the pole 

location. 

𝑐(𝑡) = 𝐾1𝑒
−𝜎1𝑡 + 𝐾2𝑡𝑒

−𝜎2𝑡 

All the step responses are plotted below. 
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Figure 39- Types of responses of 2nd order systems 

THE GENERAL SECOND ORDER SYSTEM 

To find quantitative measures of the Rise Time, Settling Time and the Percentage Overshoot. We 

will describe the response of the 2nd order system using a general form. 

The general form consists of two quantities that define the behavior: the natural frequency 𝝎𝒏 and 

the damping ratio 𝜻. 

NATURAL FREQUENCY 

It is the frequency of oscillation of the system without damping. 

DAMPING RATIO 

It is a measure of how much damped the response is. Specifically: Un-damped 𝜁 = 0, Underdamped 

0 < 𝜁 < 1, Critically damped 𝜁 = 1and Overdamped 𝜁 > 1. 

The general form is: 𝑮(𝒔) =
𝝎𝒏
𝟐

𝒔𝟐+𝟐𝜻𝝎𝒏𝒔+𝝎𝒏
𝟐, it has the poles −𝜁𝜔𝑛 ± 𝜔𝑛√𝜁2 − 1, analyzing the poles 

with respect to the value of 𝜁gives rise to the result stated previously. 

 

UNDER-DAMPED SECOND ORDER SYSTEM RESPONSE 

The under-damped second order system is a common model for physical problems. 

The transient specifications are associated with underdamped responses. 

Percentage Overshoot %OS : The amount that the waveform overshoots the steady-state, or final, 

value at the peak time, expressed as a percentage of the steady-state value 

%OS is a function only of the damping ratio 𝜁, it is given by: 

%𝑂𝑆 = 𝑒−(𝜁𝜋
√1−𝜁2⁄ ) × 100, the inverse relation is given by: 
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𝜁 =
−𝑙𝑛(%𝑂𝑆 100⁄ )

√𝜋2 + 𝑙𝑛2(%𝑂𝑆 100⁄ )
 

Rise Time 𝑻𝒓: The time required for the waveform to go from 0.1 of the final value to 0.9 of the final 

value (or from 0 to the final value) 

𝑇𝑟is a function of 𝜁and 𝜔𝑛.  

𝑇𝑟(0 → 𝑓𝑖𝑛𝑎𝑙) =
𝜋 − 𝑎𝑟𝑐𝑐𝑜𝑠(𝜁)

𝜔𝑛√1 − 𝜁2
 

 

Settling Time 𝑻𝒔: The time required for the transient's damped oscillations to reach and stay within 

±2% of the steady-state value (or within ±5% of the steady-state value) 

𝑇𝑠is a function of 𝜁and 𝜔𝑛too. 

𝑇𝑠(𝛼%) = −
𝑙𝑛𝛼

𝜔𝑛𝜁
 

 

BLOCK DIAGRAMS 

In part (3), it was shown that LTI systems modeled by transfer functions, and a transfer function is 

represented by a block with its input and output, usually systems are represented by an 

interconnection of many subsystems. To compute the response of this system, a single equivalent 

transfer function can be computed and then it response can obtained. 

There are some techniques that can be applied to reduce an interconnection of blocks into a single 

block. 

 

First, we examine the main elements of block diagrams (in addition to blocks that represent systems!): 

Signals: Either an input or an output, represented by arrowes. 

 

Figure 40- Signals representation 

Summing Junctions: As the name implies, it takes the input signals and produce an output signal 

represents the arithmetic sum of the inputs. 
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Figure 41- Summing junctions representation 

Pickoff points: Which distributes one input signal to multiple output signals. 

 

Figure 42- Pickoff point representation 

COMMON BLOCK DIAGRAMS CONFIGURATIONS 

 

CASCADE FORM 

 

Figure 43- Cascade Form 

And this is equivalent to: 

 

 

Figure 44- Equivalent block to cascaded blocks 

PARALLEL FORM 

 

Figure 45- Parallel Form 



  CONTROL REVIEW 

 

 

 

 

89 

 

And this is equivalent to: 

 

Figure 46- Equivalent Block to a parallel form 

FEEDBACK FORM 

 

Figure 47- Feedback form 

To compute the relation between C(s) and R(s), first we compute the relation between C(s) and E(s): 

 

𝐸(𝑠) = 𝑅 ∓ 𝐻(𝑠) ∗ 𝐶(𝑠) 

𝐶(𝑠) = 𝐺(𝑠) ∗ [𝑅(𝑠) ∓ 𝐻(𝑠) ∗ 𝐶(𝑠)] = 𝐺(𝑠) ∗ 𝑅(𝑠) ∓ 𝐺(𝑠) ∗ 𝐻(𝑠) ∗ 𝐶(𝑠) 

Rearranging the equation: 

(1 ± 𝐺(𝑠) ∗ 𝐻(𝑠)) ∗ 𝐶(𝑠) = 𝐺(𝑠) ∗ 𝑅(𝑠) 

𝐶(𝑠) =
𝐺(𝑠)

1 ± 𝐺(𝑠) ∗ 𝐻(𝑠)
∗ 𝑅(𝑠) 

 

Figure 48- A block equivalent to a feedback form 

Please refer to the links for examples of block diagram reduction of complex systems. 

 

Useful links:   

Control Systems Engineering, Norman S. Nise, 6th edition, Chapter 5 Reduction of Multiple Systems. 

Further Explanation on: https://www.electrical4u.com/block-diagrams-of-control-system/   

Examples on: http://www.msubbu.in/sp/ctrl/BD-Quest.htm 

 

EXAMPLES OF CONTROL SYSTEMS DESIGN 
In Controller Design, we must consider: 

https://www.electrical4u.com/block-diagrams-of-control-system/
http://www.msubbu.in/sp/ctrl/BD-Quest.htm
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 Compensate the effect of load disturbances. 

 Reduce the effect of measurement noise. 

 Setpoint following (target tracking). 

 Inaccuracies in the process model and parameter variations. 

To do this we must consider: 

 Purpose of the control system. 

 Process model. 

 Disturbance model. 

 Model inaccuracies and changes. 

 Applicable control strategies. 

 Design parameters. 

Many methods of control design were developed, in the following section, examples of “State 

Feedback”, “PID” and "Lead-Lag Compensators" control design methods are demonstrated. 

STATE FEEDBACK 

This method is also called “Pole Placement” design. The idea is to contol the location of all closed-

loop poles. 

The Process to be controlled is described by a state-space model. The CT model is described in the 

form: 

𝑥̇(𝑡) = 𝐴𝑥(𝑡) + 𝐵𝑢(𝑡) 

𝑦(𝑡) = 𝐶𝑥(𝑡) + 𝐷𝑢(𝑡) 

And the DT equivalent model is given by: 

𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) + 𝐵𝑢(𝑘) 

𝑦(𝑘) = 𝐶𝑥(𝑘) + 𝐷𝑢(𝑘) 

The following figure shows the block diagram of the system: 

 

Figure 49- State-space representation 

Where the light lines are scalars and the heavy lines are vectors. For simplicity: 𝑢, 𝑦 ∈ ℜ and 𝐷 = 0. 

In a typical feedback control system, the output y is fed back to the summing junction. 

In “State Feedback” as the name implies, all the state variables x are fed back to the control input 

u, through a gain 𝑘𝑖, therefor the input becomes: 𝑢 = −𝐾𝑥 + 𝑟in this case K is a vector 𝐾 ∈ ℜ𝑛. 

Thus we obtain: 
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𝑥̇ = 𝐴𝑥 + 𝐵𝑢 = 𝐴𝑥 + 𝐵(−𝐾𝑥 + 𝑟) = (𝐴 − 𝐵𝐾)𝑥 + 𝐵𝑟 

Now r is the new input, which in this case is considered the desired (or reference) input. 

The result is shown the following diagram. 

 

Figure 50- State-Feedback control 

The closed loop system is a state matrix (A-BK) instead of just A. since its response is given by the 

location of its poles. Which are the roots of its characteristic equation, that is det[sI-(A-BK)]=0 

The values of K are selected to obtain the desired poles locations. The question is: Is it always 

possible? let’s have some examples. 

EXAMPLE 

Find a state feedback gain K that modifies the following system: 

𝑥̇ = [
1 2 −1
0 −1 0
1 0 0

] 𝑥 + [
0
−1
0
] 𝑢 

To have its closed-loop poles at (-5+j7, -5-j7, -7).  

In this case 𝐾 = [𝑘1 𝑘2 𝑘3],  So computing the closed-loop state matrix A-BK gives: 

𝐴 − 𝐵𝐾 = [
1 2 −1
0 −1 0
1 0 0

] − [
0
−1
0
] [𝑘1 𝑘2 𝑘3] = [

1 2 −1
𝑘1 −1 + 𝑘2 𝑘3
1 0 0

] 

To obtain the characterstic equation: consider the following matrix: 

𝑠𝐼 − (𝐴 − 𝐵𝐾) = [
𝑠 − 1 −2 1
0 𝑠 + 1 0

−1 + 𝑘1 𝑘2 𝑠 + 𝑘3

] 

Then the determinant is given by: 

𝑑𝑒𝑡(𝑠𝐼 − (𝐴 − 𝐵𝐾)) = 𝑠3 − 𝑘2𝑠
2 + (𝑘2 − 2𝑘1)𝑠 + (1 + 2𝑘3 − 𝑘2) = 0 

The desired characteristic equation given the desired poles: (𝑠 + 5 − 𝑗7)(𝑠 + 5 + 𝑗7)(𝑠 + 7) =

0Which gives: 
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𝑠3 + 17𝑠2 + 144𝑠 + 518 = 0 

By equating the two left-hand sides we find that: 𝑘2 = −17, 𝑘1 =
−(144−17)

2
= −80.5, 𝑘3 =

−(518+𝑘2−1)

2
= −250 enable us to have the characteristics equation similar to the desired one. 

MATLAB  CODE 

 

Now, Check this case where we slightly modify B. 

EXMAPLE 

Find a state feedback gain K that modifies the following system: 

𝑥̇ = [
1 2 −1
0 −1 0
1 0 0

] 𝑥 + [
0
0
1
] 𝑢 

To have its closed-loop poles at (-5+j7, -5-j7, -7).  

In this case 𝐾 = [𝑘1 𝑘2 𝑘3],  So computing the closed-loop state matrix A-BK gives: 

𝐴 − 𝐵𝐾 = [
1 2 −1
0 −1 0
1 0 0

] − [
0
0
1
] [𝑘1 𝑘2 𝑘3] = [

1 2 −1
0 −1 0

1 − 𝑘1 −𝑘2 −𝑘3

] 

To obtain the characteristic equation: consider the following matrix: 

𝑠𝐼 − (𝐴 − 𝐵𝐾) = [
𝑠 − 1 −2 1
0 𝑠 + 1 0

−1 + 𝑘1 𝑘2 𝑠 + 𝑘3

] 

Then the determinant is given by: 

𝑑𝑒𝑡(𝑠𝐼 − (𝐴 − 𝐵𝐾)) = 𝑠3 + 𝑘3𝑠
2 + (𝑘1 − 2)𝑠 + (𝑘1 − 𝑘3 − 1) = 0 
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The desired charactersitic equation given the desired poles: (𝑠 + 5 − 𝑗7)(𝑠 + 5 + 𝑗7)(𝑠 + 7) =

0Which gives: 

𝑠3 + 17𝑠2 + 144𝑠 + 518 = 0 

By equating the two left-hand sides we obtain: 𝑘3 = 17, 𝑘1 = 144 + 2 = 146but this enforces the 

last term to be (146-17-1)=(128), which is not (518). Therfore, it is not possible to locate all the poles 

of this system in the desired locations. 

MATLAB CODE 

The error message says that the system is “nearly uncontrollable”, so what does it mean to have a 

controllable system, and how can we test the controllability of the system? 

 

CONTROLLABILITY 

 

The problem of controllability is to find out whether or not we are able to drive the system to a 

desired state with an input of finite duration (a sequence of inputs of finite length for discrete time 

systems). 

Since the problem of controllability is rather complicated, we introduce it by means of a discrete time 

system. Given an initial state 𝒙(0) and a scalar input sequence of length 𝑛, then the sequence of the 

states will be: 

𝒙(1) = 𝐴𝒙(0) + 𝐵𝒖(0) 

𝒙(2) = 𝐴𝒙(1) + 𝐵𝒖(1) = 𝐴2𝒙(0) + 𝐴𝐵𝒖(0) + 𝐵𝒖(1) 

… 
𝒙(𝑛) = 𝐴𝑛𝒙(0) + 𝐴𝑛−1𝐵𝒖(0) + ⋯+ 𝐵𝒖(𝑛 − 1) 

Taking the higher power term of A on the left side we can write: 
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𝒙(𝑛) − 𝐴𝑛𝒙(0) = 𝒞(

𝒖(𝑛 − 1)
𝒖(𝑛 − 2)

…
𝒖(0)

) 

where the matrix 𝒞 is called controllability matrix, a square matrix having for each column one of 

the terms 𝐴𝑘𝐵. If the controllability matrix is nonsingular, one can invert the system and find the 

input sequence such that the desired states are reached. This result can be extended to input vectors 

and continuous time systems. 

 

EXAMPLE 

Is the following system controllable? 

𝑥̇ = [
1 2 −1
0 −1 0
1 0 0

] 𝑥 + [
0
−1
0
] 𝑢 

We already know the result since we were able to find state feedback gain K able to place the poles 

to the desired places. But let’s verify that using the controllability matrix C. 

𝐶 = [𝐵 𝐴𝐵 𝐴2𝐵] = [
0 −2 0
−1 1 −1
0 0 −2

]the columns of this matrix are linearly independent, 

therefore it is a full-rank matrix. Thus, the system is fully controllable. 

 

EXAMPLE 

Is the following system controllable? 

𝑥̇ = [
1 2 −1
0 −1 0
1 0 0

] 𝑥 + [
0
−1
0
] 𝑢 

We already know the result since we were able to find state feedback gain K able to place the poles 

to the desired places. But let’s verify that using the controllability matrix C. 

𝐶 = [𝐵 𝐴𝐵 𝐴2𝐵] = [
0 −1 −1
0 0 0
1 0 −1

]the columns of this matrix are linearly dependent, therefore it 

is a rank deficient matrix. Thus, the system is not fully controllable. Specifically, rank C=2, this 

implies that only two of the natural modes are controllable. 

 

Now that we defined the condition necessary to control all the natural modes the plant. One 

observation about this method arises. Can we measure the states and feed them back to the 

controller? Mostly no, since the states are internal variables, either their access is not possible, or it 

is expensive to physically measure them. The solution is within the following section. 
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OBSERVER DESIGN 

Usually it is impractical to measure all the state, but it is possible to estimate them. 

The Observer, or the Estimator is a dynamical system that calcualtes the state variables for the input 

and output data of the plant. And the model of the plant. 

Block diagram of state observation: 

 

Figure 51- Observer topology 

We will consider the method of Luenberger in observer design: 

Consider a plant with the following state-space model: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 

𝑦 = 𝐶𝑥 

Writing the observer in the following form: 

𝑥̇ = 𝐴𝑥 + 𝐵𝑢 + 𝐿(𝑦 − 𝑦) 

𝑦 = 𝐶𝑥 

 

Now let us subtract the state equations of the plant and the observer: 

(𝑥̇ − 𝑥̇) = 𝐴(𝑥 − 𝑥) − 𝐿(𝑦 − 𝑦) 

(𝑦 − 𝑦) = 𝐶(𝑥 − 𝑥) 

Which describes the error between the real and estimated states and the outputs. We can substitute 

the output equation in the state equation: 

(𝑥̇ − 𝑥̇) = (𝐴 − 𝐿𝐶)(𝑥 − 𝑥) → 𝑒𝑥̇ = (𝐴 − 𝐿𝐶)𝑒𝑥 

(𝑦 − 𝑦) = 𝐶(𝑥 − 𝑥) = 𝐶𝑒𝑥 

Now we got the error dynamics, we just need to make sure that it will converge to zero as the time 

evolves. For achieving this we can choose the values of design variable L so that the eigenvalues of 

the state matrix (A-LC) have negative real parts. In other words, to make it asymptotically stable. 
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We also need the observation error to converge faster than the closed-loop response. 

As in the case in state feedback, is it always possible to estimate the select L such that (A-LC) 

have eigenvalues of our choice? 

EXMAPLE 

Design a suitable observer for the following plant: 

𝑥̇ = [
1 2 −1
0 −1 0
1 0 0

] 𝑥 + [
0
−1
0
] 𝑢, and 

𝑦 = [0 0 1]𝑥 

Solution: let us assume that an observer with the following eigenvalues of (A-LC), is the one we look 

for, which corresponds to the following characteristic equation: 

𝑠3 + 18𝑠2 + 107𝑠 + 210 = 0 

let us compute the matrix (A-LC): 

𝐴 − 𝐿𝐶 = [
1 2 −1
0 −1 0
1 0 0

] − [

𝑙1
𝑙2
𝑙3

] [0 0 1] = [

1 2 −1 − 𝑙1
0 −1 −𝑙2
1 0 −𝑙3

], then: 

𝑠𝐼 − (𝐴 − 𝐿𝐶) = [

𝑠 − 1 −2 1 + 𝑙1
0 𝑠 + 1 𝑙2
−1 0 𝑠 + 𝑙3

] 

 

The characterstic equation 𝑑𝑒𝑡[𝑠𝐼 − (𝐴 − 𝐿𝐶)] = 𝑠3 + 𝑙3𝑠
2 + 𝑙1𝑠 + (2𝑙2 − 𝑙3 + 𝑙1 + 1) = 0 

With this, we can easily subtitute: 𝑙3 = 18, 𝑙1 = 107,2𝑙2 − 𝑙3 + 𝑙1 + 1 = 210 → 𝑙2 = 60 

𝐿 = [107 60 18]𝑇 

MATLAB CODE 

 

Now let us check this case. 

 

EXAMPLE 

Design a suitable observer for the following plant: 

𝑥̇ = [
1 2 −1
0 −1 0
1 0 0

] 𝑥 + [
0
−1
0
] 𝑢, and 

𝑦 = [0 3 0]𝑥 

Solution: let us assume that the desired eigenvalues are same as the previous example, which gives 

the following characteristic equation: 
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𝑠3 + 18𝑠2 + 107𝑠 + 210 = 0 

let us compute the matrix (A-LC): 

𝐴 − 𝐿𝐶 = [
1 2 −1
0 −1 0
1 0 0

] − [

𝑙1
𝑙2
𝑙3

] [0 0 1] = [

1 2 −1 − 𝑙1
0 −1 −𝑙2
1 0 −𝑙3

], then: 

𝑠𝐼 − (𝐴 − 𝐿𝐶) = [

𝑠 − 1 −2 1 + 𝑙1
0 𝑠 + 1 𝑙2
−1 0 𝑠 + 𝑙3

] 

 

The characteristic equation 𝑑𝑒𝑡[𝑠𝐼 − (𝐴 − 𝐿𝐶)] = 𝑠3 + 3𝑙2𝑠
2 − 3𝑙2𝑠 + 3𝑙2 = 0 

With this, it is impossible to select a value of 𝑙2 that makes all the 3 terms equal to the desired 

equation. It is up to the original matrices A and C to decide how the estimation error evolves with 

time. 

OBSERVABILITY  

 

The concept of Observability is related to our capabilities to monitor the evolution of a dynamical 

system given the values of the output that we get from the system itself.  

Once we know the initial conditions for the states of a system, 𝒙(0) we can obtain the system state at 

every time instant 𝑡 by means of the matrix exponential: 

𝒙(𝑡) = 𝑒𝐴𝑡𝒙(0) 

In few words, we can say that a system is observable if we can get the value of the initial conditions 

from the values of the output.  

For a LTI system, the following relations hold: 

𝒚(0) = 𝐶𝒙(0) 

𝒚̇(0) = 𝐶𝒙̇(0) = 𝐶𝐴𝒙(0) 

𝒚̈(0) = 𝐶𝒙̈(0) = 𝐶𝐴2𝒙(0) 

𝒚⃛(𝑡0) = 𝐶𝒙⃛(0) = 𝐶𝐴3𝒙(0) 

… 

𝒚𝑛−1(0) = 𝐶𝒙𝑛−1(0)  = 𝐶𝐴𝑛−1𝒙(0) 

Where 𝑛 is the number of states of the system. The equations above can be put in a matrix form: 

(

𝒚(0)
𝒚̇(0)
…

𝒚𝑛−1(0)

) = (

𝐶
𝐶𝐴
…

𝐶𝐴𝑛−1

)𝒙(0) 
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That is: 

ℴ𝒙(0) = 𝑌(0) 

The initial conditions of the system are found from the output values only if the Observability matrix 

ℴ is full rank: 

𝑟𝑎𝑛𝑘(ℴ) = 𝑛 

The concept is maybe more intuitive for a discrete time system, for which the above relations are: 

𝒚(0) = 𝐶𝒙(0) 

𝒚(1) = 𝐶𝒙(1) = 𝐶𝐴𝒙(0) 

𝒚(2) = 𝐶𝒙(2) = 𝐶𝐴
2𝒙(0) 

𝒚(3) = 𝐶𝒙(3) = 𝐶𝐴
3𝒙(0) 

… 

𝒚(𝑛−1) = 𝐶𝐴
𝑛−1𝒙(0) 

Since derivation in discrete time is equivalent to consider the successive element.  

The Observability matrix is defined as before; in this case is clear that to obtain the n components of 

the initial state vector we need n equations, and that we need the Observability matrix to be full rank 

to solve the system. 

Useful links:  

 

More on controllability and Observability: 

-“Linear state-space control systems” Robert L. Williams, II, Douglas A. Lawrence  

-“Fundamentals of linear state space systems” John S. Bay, McGraw Hill, 1999 

-https://ocw.mit.edu/courses/aeronautics-and-astronautics/16-30-feedback-control-systems-fall-

2010/lecture-notes From MIT OpenCourseWare 

EXAMPLE 

Is the following system observable? 

𝑥̇ = [
1 2 −1
0 −1 0
1 0 0

] 𝑥 + [
0
−1
0
] 𝑢and 

𝑦 = [0 0 1]𝑥 

Solution: constructing the observability matrix: 𝑂 = [
𝐶
𝐶𝐴
𝐶𝐴2

] = [
0 0 1
1 0 0
1 2 −1

], and this matrix contains 

linearly independent columns (i.e. full rank). Therefore the system is fully observable. 
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EXAMPLE 

Is the following system observable? 

𝑥̇ = [
1 2 −1
0 −1 0
1 0 0

] 𝑥 + [
0
−1
0
] 𝑢and 

𝑦 = [0 3 0]𝑥 

Solution: constructing the observability matrix: 𝑂 = [
𝐶
𝐶𝐴
𝐶𝐴2

] = [
0 3 0
0 −3 0
0 3 0

], and this matrix contains 

linearly dependent columns (i.e. rank deficient). Therefore the system is not fully observable. 

 

STATE FEEDBACK EXAMPLE 
EXAMPLE 

For the plant given by the following state-space representation: 

𝑥̇ = [
1 2 −1
0 −1 0
1 0 0

] 𝑥 + [
0
−1
0
] 𝑢, and 

𝑦 = [0 0 1]𝑥 

Use State-Feedback method to design a control system which has the following response:  

Rise Time: 𝒕𝒓(𝟎 − 𝟏𝟎𝟎) = 𝟎. 𝟑𝒔𝒆𝒄 

Settling Time:𝒕𝒔(𝟓𝒑𝒆𝒓𝒄𝒆𝒏𝒕) = 𝟎. 𝟓𝒔𝒆𝒄 

% overshoot%𝑶𝑺 = 𝟎. 𝟎𝟕 

Solution:  

1) This can be adopting by adopting the 2nd order prototype system general form. 

We can compute 𝜔𝑛 = 12 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ and 𝜁 = 0.65, now we have 2 poles, we can add another pole to 

match the degree of the desired system with the degree of the plant. Let us make a high frequency 

pole such that it decays quickly having a small effect on the system response. 

Therefore, our desired closed loop system must have the following characteristic equation: 

 (𝑠2 + 15.6𝑠 + 144) (
𝑠

50
+ 1) = 0 to achive the desired performance criteria. 

From the previous examples we already know that the plant is both controllable and observable. 

Using the procedures shown in the previous examples or using the MATLAB function “place”, we 

get 𝐾 = [−494.8 −65.6 −3566.7] 

Now let us design an observer that makes the states of the system available. 
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Since we want the observation to be faster than the closed loop response. We must select the 

eigenvalues of the matrix (A-LC) to have relatively high negative real parts. Let them be (-30, -

40, -50). Which gives the following characterstic equation: 𝑠3 + 120𝑠2 + 4700𝑠 + 60000 = 0 

The characterstic equation of (A-LC) where 𝐿 = [𝑙1 𝑙2 𝑙3]
𝑇is computed from a previous example 

as:𝑑𝑒𝑡[𝑠𝐼 − (𝐴 − 𝐿𝐶)] = 𝑠3 + 𝑙3𝑠
2 + 𝑙1𝑠 + (2𝑙2 − 𝑙3 + 𝑙1 + 1) = 0 

We get: 𝑙3 = 120, 𝑙1 = 4700,2𝑙2 − 𝑙3 + 𝑙1 + 1 = 60000 → 𝑙2 = 27709.5 

𝐿 = [4700 27709.5 120]𝑇 

Now Let us implement this result in SIMULINK to check the response. 

 

Figure 52- SIMULINK representation for the plant in state-space and observer with identical parameters, sharing the same input with 

the plant 

The plant is represented by the SIMULINK block State-Space, and the observer is constructed from 

the blocks Matrix Gain, Integrator, Sum, Mux and Demux. 

Since both the plant and the observer have exactly the same model, are excited by the same input, 

and starting from the same initial condition, we expect them to have the same output. As shown in 

the Scope graph in figure 53. 
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Figure 53- Output response of the system in figure 52 

But if the initial condition was different, and this is a more realistic case, we can’t expect the 

estimation error to converge to zero with this configuration. Below is the response of the plant and 

the observer, with the plant starting from initial condition 𝑥0 = [−0.1 0.7 0]𝑇. 

 

Figure 54- Output respone of the system in figure 52, with the initial condition of the plant different from the observer initial 

condition 

We will use Luenberger’s configuration, as shown below: 
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Figure 55- Luenberger observer 

In this case, even with the difference in initial conditions, the output error converges very fast. 

 

Figure 56- Output response of the system in figure 55 

Now that the states are available, we can feed it back by a Matrix Gain K. 
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Figure 57- State feedback control 

 

The response, as shown below, complies with the performance criteria. 
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Figure 58- Output response of the system in figure 57 

PID CONTROL 

DEFINITION 

The PID control is a control methodology in which the controller calculates continuously the error 

value e(t) as the difference between the reference value (set point) and the measured value (process 

variable), and applies a correction based on the proportional, integral and derivative terms.  

 

Figure 59- PID Control 

The control variable u(t) is a sum of three terms: proportional, integral and derivative terms. 

𝑢(𝑡) = 𝐾𝑝 (𝑒(𝑡) +
1

𝑇𝑖
∫ 𝑒
𝑡

0
(𝑡) + 𝑇𝑑

𝑑𝑒(𝑡)

𝑑𝑡
). 

When tuning the gains 𝑲𝒑, 𝑻𝒊and 𝑻𝒅, ususally with no knowledge of the process model needed, the 

basic design requirements can be met. 

The effects of each term is explained through the following example. 

 

EXAMPLE 

Consider a plant with a model given by:𝐺(𝑠) =
1

(𝑠+1)3
. Find the parameters of a PID controller to 

satisfy the following criteria for the response of a unitary step input. 

Rise Time = 1 second 
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Settling Time= 6 seconds  

%overshoot= 8% 

And no Steady State Error 

 

SOLUTION 

We will examine the effect of increasing the value of each of the variables 𝐾𝑝, 𝑇𝑖and 𝑇𝑑. 

PROPORTIONAL ACTION  

𝒖(𝒕) = 𝑲𝒑𝒆(𝒕) 

The proportional term produces an output value that is proportional to the current error value. The 

proportional response can be adjusted by multiplying the error by a constant 𝐾𝑝, called the 

proportional gain constant. 

In general, increasing the proportional gain will increase the speed of the control system response. 

However, if the proportional gain is too large, the process variable will begin to oscillate. If 𝐾𝑝 is 

increased further, the oscillations will become larger and the system will become unstable and may 

even oscillate out of control. 

The Proportional term reduces the steady-state error, but does not eliminate it completely. The steady-

state error can be corrected by adding an integral term. 

By increasing 𝐾𝑝from 1 to 8, we obtain the following results: 

 

Table 1- Performance for different values of Kp 

Kp Rise Time Settling Time Overshoot [%] Steady State 

Error 

1 1.8723 8.3956 13.9071 0.5 

2 1.3498 10.0674 29.8582 0.333 

3 1.1082 13.5698 43.1090 0.25 

4 0.9634 18.6946 54.2671 0.2 

5 0.8656 26.0796 63.8735 0.167 

6 0.7936 40.5667 72.2968 0.143 

7 0.7378 85.8496 79.8040 0.125 

8 Not Stable Not Stable Not Stable Not Stable 

 

The response is shown below for some values of Kp. 



  CONTROL REVIEW 

 

 

 

 

106 

 

 

Figure 60- step response of a proportional control with differnt values of Kp 

 

INTEGRAL ACTION   

 

𝒖(𝒕) =
𝟏

𝑻𝒊
∫ 𝒆
𝒕

𝟎

(𝝉)𝒅𝝉 

The integral term accelerates the movement of the process towards set-point (reference) and 

eliminates the residual steady-state error that occurs with a pure proportional controller. However, 

since the integral term responds to accumulated errors from the past, it can cause the present value to 

overshoot the set-point value. 

Using both the proportional and the integral actions, and by increasing 𝑇𝑖from 1 to 8, while keeping 

𝐾𝑝 = 1 we obtain the following results: 
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Table 2- performance of PI conrtol for differnt values of Ti 

Ti Rise Time Settling Time Overshoot Steady State 

Error 

1 1.7271 30.9388 54.3517 0 

1.5 2.0581 15.2556 28.5868 0 

2 2.3640 11.1555 13.5191 0 

2.5 2.6810 11.2633 3.5231 0 

3 3.0622 12.8774 0 0 

3.5 3.7284 17.0480 0 0 

4 9.2768 20.2509 0 0 

4.5 10.4974 23.5872 0 0 

5 12.0901 26.8732 0 0 

 

Note that Ti is in the denominator (increasing its value decreases the integral action). The response 

is shown for some values of Ti. 



  CONTROL REVIEW 

 

 

 

 

108 

 

 

Figure 61- Step responses of PI control for differnt values of Ti 

 

DERIVATIVE ACTION   

 

𝒖(𝒕) = 𝑻𝒅
𝒅𝒆(𝒕)

𝒅𝒕
 

Derivative action predicts system behavior and thus improves settling time and stability of the system. 

Using all PID terms, and by increasing 𝑇𝑖from 0.1 to 4.1, while keeping𝐾𝑝 = 1we obtain the 

following results: 

 

Table 3- performance of PID control for differnt values of Td 

Td Rise Time Settling Time Overshoot Steady State 

Error 

0.1 1.7956 27.3501 50.3298 0 

1.1 2.3298 17.9609 24.5506 0 
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2.1 2.9310 16.0398 16.4991 0 

3.1 3.5637 18.2269 13.7290 0 

4.1 4.0142 20.1882 12.4257 0 

The response is shown for some values of Td. 

 

 

Figure 62- Step responses of PID control for different values of Td 

ALL PID ACTIONS  

 

By selecting 𝑲𝒑 = 𝟒. 𝟑𝟑, 𝑻𝒊 = 𝟑. 𝟔𝟐 and 𝑻𝒅 = 𝟎. 𝟖𝟗𝟒 we get the following response. 
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Figure 63- Step response of a tuned PID control 

Which achieves the required specifications. 

 

TUNING METHODS  

 

Apart from Manual Tuning, several tuning methods can be exploited, some require few knowledge 

of the plant “process” model, other are empirical methods. 

Links: 

Astrom and Hagglund PID Automatic Tuning method 

PID Controllers, Theory, Design, and Tuning, 2nd edition, by Karl J. Astrom and Tore Hagglund 

 

Ziegler_Nichols PID Tuning method + Tuning via frequency response approach 

Modern Control Engineering, 5th edition, by Katsuhiko Ogata, Chapter 8, PID Controllers and 

Modified PID Controllers 

MATLAB PID TUNER 

The PID Tuner tool in MATLAB can be used to automatically tune the PID parameters. One way is 

to use Simulink to connect the blocks as shown below.  



  CONTROL REVIEW 

 

 

 

 

111 

 

 

Figure 64- Simulink representation of a PID control 

Selecting the “PID Controller” block opens the following dialog. 

 

 

Figure 65- Simulink PID block 

Then click on “Tune...” to open the following dialog. 
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Figure 66- MATLAB PID Tuner, dialog 

After finishing the tuning process, you can update the Simulink block by pressing “Update Block”. 

You can also export it to MATLAB workspace. 



  CONTROL REVIEW 

 

 

 

 

113 

 

 

Figure 67- MATLAB PID Tuner, you can update the parameteres in the Simulink block or export 

the controller transfer function to MATLAB workspace 

Link 

MATLAB PID Tuner: https://it.mathworks.com/help/control/ref/pidtuner-app.html 

 

LEAD COMPENSATORS 

The Lead Compensator transfer function is given by: 𝐺𝑙𝑒𝑎𝑑 =
1+

𝑠

𝑧𝑑

1+
𝑠

𝑚𝑑𝑧𝑑

 

The pole-zero location of the compensator is sketched below. Since 𝑚𝑑 > 1, the pole is always 

located on the left-hand side of the zero. For some different 𝑚𝑑’s, the Bode diagram of the lead 

compensator with 𝑧𝑑 = 1 are shown below. 

https://it.mathworks.com/help/control/ref/pidtuner-app.html
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Figure 68- Bode diagram of a Lead compensator with differnt values of md and zd=1 

It can be observed that when 𝑚𝑑 is large, the gain compensation is large, and the phase 

compensation as well. 

 

Figure 69- Pole-zero map of a Lead Compensator 

To show the impact of the lead compensator on a process, consider the following example. 

EXAMPLE 

For the plant given by the transfer function: 𝐺(𝑠) =
1

𝑠(𝑠+1)2
 

The step response and Bode plot are shown: 
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Figure 70- Bode diagram and the step response of G(s)=1/(s(s+1)^2) 

Its phase margin is 21.39º at a frequency of 0.682 rad/sec, and a gain margin of 2 at a frequency of 1 

rad/sec. 

The objective is to increase both the speed and the damping of the feedback system. From the 

analysis part we know that increasing the phase margin increases the damping of the feedback 

system, and increasing the crossover frequency (or the bandwidth) increases the speed of the 

system in general (rise time and settling time). 

That can be achieved by adding a Lead Compensator of a suitable frequency. 

Selecting 𝑧𝑑 = 0.3846 and 𝑚𝑑 = 16, we get 𝐺𝑙𝑒𝑎𝑑 =
2.6𝑠+1

0.1625𝑠+1
, which has the following frequency 

response. 
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Figure 71- Bode diagram of the selected Lead Compensator 

This Compensator adds gain of about 12 dB, and a phase of about 61.9º to the process at frequency 

of about 1.53 rad/sec. This will increase the crossover frequency 𝜔𝑐because the gain plot will go up 

around this frequency, and will increase the phase around this frequency (the phase margin). 

 

Figure 72- Bode diagram of the Lead Compensated und the uncompensated systems 

The phase margin was increased from 21.39º to 47.25º, and the crossover frequency was increased 

from 0.682 to 1.287 rad/sec. 

The following plot shows the improvement in the step response of the system. 
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Figure 73- Step response of the compensated and the uncompensated systems 

LAG COMPENSATOR 

The Lag Compensator transfer function is given by: 𝐺𝑙𝑎𝑔 =
1+

𝑠

𝑚𝑖𝑧𝑖

1+
𝑠

𝑧𝑖

 

The pole-zero location of the compensator is sketched below. Since 𝑚𝑖 > 1, the zero is always located 

on the left-hand side of the pole. For some different 𝑚𝑖’s, the Bode and Nyquist diagrams of the lead 

compensator with 𝑧𝑖 = 1 are shown below. 

 

It can be observed that when 𝑚𝑖 is large, the gain attenuation is large, and the phase 

compensation as well. 

To show the impact of the lag compensator on a process, consider the following example. 
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EXAMPLE 

For the same plant treated in the previous example: 𝐺(𝑠) =
1

𝑠(𝑠+1)2
 

With lag compensation, increasing the damping by increasing the gain margin is possible by 

exploiting the attenuation in the gain. In this case we are not interested in the phase lag itself. 

Therefore, the region where the maximum phase lag occurs is usually placed at a low frequency 

where it does not affect the transient behaviour. 

On the other hand, decreasing the gain reduces the cutoff frequency 𝜔𝑐, which reduces the bandwidth 

and thus the speed of the system (rise time and settling time). 

Selecting 𝑧𝑖 =
0.001

2.6
= 0.000385 and 𝑚𝑖 = 3, we get 𝐺𝑙𝑒𝑎𝑑 =

2.6𝑠+1

0.1625𝑠+1
, which has the following 

frequency response. 

 

Figure 76- Bode diagram of the selected Lag compensator 

Figure 74- Pole-zero map of the Lag compensator Figure 75- Bode diagram of the Lag compensator for different values of md 

and for zd=1 
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This Compensator reduces the phase of about -30º at a low frequency (0.000683 rad/sec), so it does 

not actually affect the response. 

And on the other hand it decreases the magnitude by -9.54 after that low frequency (middle and high 

frequencies), this will increase the phase margin of the system from 21.4º to 55.9º, which results in a 

more stable system with more damped response (less overshoot). 

 

Figure 77- Bode diagram of the Lag compensated and the uncompensated systems 

This gain attenuation results also in decreasing the crossover frequency𝜔𝑐from 0.682 to 0.305 rad/sec, 

which decreases the rise time and the settling time. 

The following plot shows the improvement in the step response of the system. 

 

Figure 78-Step response of the Lag compensated and the uncompensated systems 

Although we got a less oscillating response, less overshoot, the rise time is reduced a bit, but the 

settling time is still better due to the more damped response. 
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Figure 79- Step responses of the Lead Compensated, Lag Compensated and the uncompensated systems 

The difference is more obvious plotting the responses of both compensation techniques together. 

Both compensator got almost the same overshoot value. But the Lead compensator achieved 

considerably faster response. 

 

CONTROL DESIGN USING LEAD-LAG COMPENSATION 

After we examined the features of each compensator type. We can design a control system that meets 

specifications using a Lead-Lag compensator. 

EXAMPLE 

For the feedback system shown below. 

 

Figure 80- Block diagram of a control system 
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Where: 

𝐺𝑝(𝑠) =
5

𝑠(𝑠+1)(0.25𝑠+1)
, 

𝐺𝑎 = 1, 

𝑑𝑝(𝑡) = 𝐷𝑝0𝑡; |𝐷𝑎0| ≤ 5 ∗ 10−3 

Design a suitable Lead-Lag compensator 𝐺𝑐(𝑠), in order to meet the following requirements: 

Steady State error for a unitary step input reference “r” |𝑒𝑟
∞| = 0. 

Steady State error in the presence of 𝑑𝑝: |𝑦𝑑𝑎
∞ | ≤ 1.5 ∗ 10−3 

Rise time: 𝑡𝑟 ≤ 0.5𝑠(from 0 to 100%) 

Settling time: 𝑡𝑠,5% ≤ 3𝑠 

Overshoot: %𝑂𝑆 ≤ 10% 

 

SOLUTION 

The Lead-Lag controller can be written in the form: 𝐺𝑐(𝑠) =
𝐾𝑐

𝑠𝜈
(𝐺𝑐𝐿𝑒𝑎𝑑)(𝐺𝑐𝐿𝑎𝑔) =

𝐾𝑐

𝑠𝜈
(

1+
𝑠

𝑧𝑑

1+
𝑠

𝑚𝑑𝑧𝑑

)(
1+

𝑠

𝑚𝑖𝑧𝑖

1+
1

𝑧𝑖

) 

STEPS: 

- Derive steady state requirements to define constraints on 𝐾𝑐and 𝜈 

- Translate transient requirements to a range for crossover frequency 𝜔𝑐and phase margin 𝜙𝑀. 

- Plot Bode diagram for the uncompensated system. 

- Design the Lead part, to add the needed phase, at the desired frequency 𝜔𝑐. 

- Design the Lag part, to reduce the gain, in order to adjust the frequency𝜔𝑐to become as required. 

 

DERIVING STEADY STATE REQUIREMENTS FOR THE TRACKING ERROR 

We will using the final value theorem to test the steady state output response. 

Writing the expression for the output error “e” when a reference input “r” is applied: 

𝑒(𝑠) = 𝑟(𝑠) − 𝑦(𝑠) = 𝑟(𝑠) − 𝐺𝑐𝐺𝑎𝐺𝑝𝑒(𝑠) 

(1 + 𝐺𝑐𝐺𝑎𝐺𝑝)𝑒(𝑠) = 𝑟(𝑠) 

𝑒(𝑠) =
1

1 + 𝐺𝑐𝐺𝑎𝐺𝑝
𝑟(𝑠) 

The final value theorem is given by: 
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|𝑒𝑟
∞| = 𝑙𝑖𝑚

𝑠→0
𝑠|𝑒(𝑠)| 

|𝑒𝑟
∞| = 𝑙𝑖𝑚

𝑠→0
𝑠 |

1

1 + 𝐺𝑐𝐺𝑎𝐺𝑝
𝑟(𝑠)| 

since we know that r(s) is a step function, 𝐺𝑝has one pole in the origin and we also know the form of 

𝐺𝑐 

|𝑒𝑟
∞| = 𝑙𝑖𝑚

𝑠→0
𝑠 |

1

1+
𝐾𝑐
𝑠𝜈
𝐾𝑝

𝑠

1

𝑠
| = 𝑙𝑖𝑚

𝑠→0
|

𝑠𝜈+1

𝑠𝜈+1+𝐾𝑐𝐾𝑝
| = 0, regardless the value of 𝜈, the steady state error is 0 

thanks to the pole in-the-origin contained in the plant. Moreover, there is no constraint on 𝐾𝑐. 

DERIVING STEADY STATE REQUIREMENTS FOR THE PLANT NOISE REJECTION 

Writing the expression to the output error in the presence of 𝑑𝑝only: 

𝑦𝑑𝑝(𝑠) = 𝑑𝑝(𝑠) − 𝐺𝑐𝐺𝑎𝐺𝑝𝑦𝑑𝑝(𝑠) 

(1 + 𝐺𝑐𝐺𝑎𝐺𝑝)𝑦𝑑𝑝(𝑠) = 𝑑𝑝(𝑠) 

𝑦𝑑𝑝(𝑠) =
1

1 + 𝐺𝑐𝐺𝑎𝐺𝑝
𝑑𝑝(𝑠) 

and using the final value theorem: |𝑦𝑑𝑝
∞ | = 𝑙𝑖𝑚

𝑠→0
𝑠 |𝑦𝑑𝑝(𝑠)| = 𝑙𝑖𝑚𝑠→0

𝑠 |
1

1+𝐺𝑐𝐺𝑎𝐺𝑝
𝑑𝑝(𝑠)| ≤ 1.5 ∗ 10

−3 

Knowing that 𝑑𝑝(𝑠) =
𝐷𝑝0

𝑠2
, we can write: |𝑦𝑑𝑝

∞ | = 𝑙𝑖𝑚
𝑠→0

𝑠 |
1

1+
𝐾𝑐
𝑠𝜈
𝐾𝑝

𝑠

𝐷𝑝0

𝑠2
| = 𝑙𝑖𝑚

𝑠→0
|

𝐷𝑝0

𝑠+
𝐾𝑐𝐾𝑝

𝑠𝜈

| ≤ 1.5 ∗ 10−3 

by selecting 𝜈 = 0we still can meet the criteria. Note that the DC gain of the plant 𝐾𝑝 = 5. 

|
𝐷𝑝0

𝐾𝑐𝐾𝑝
| ≤ 1.5 ∗ 10 − 3 

|𝐾𝑐| ≥
1.5 ∗ 10−3 ∗ 5

5 ∗ 10−3
= 1.5 

in summary: for the steady state requirements, no poles in the origin should be added to the controller, 

and the DC gain of the controller should be larger than 1.5. 

 

TRANSLATE TRANSIENT REQUIREMENTS TO A RANGE FOR CROSSOVER FREQUENCY AND PHASE 

MARGIN  

We shall adopt the General Form of 2nd order systems, because we have formulas that can relate the 

transient performance specifications 𝑡𝑟 , 𝑡𝑠and %𝑂𝑆to the damping ratio 𝜁and the natural frequency 

𝜔𝑛. Recalling the general form:  

The approach is to related 𝜁and 𝜔𝑛to frequency response characteristics: 𝜔𝑐and 𝜙𝑀, then design 

compensators to achieve these characteristics in the frequency domain, with this we can obtain 

approximately the design specifications. 
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%𝑂𝑆 → 𝜁 → 𝜙𝑀 

 

𝜁 =
|𝑙𝑛(%𝑂𝑆)|

√𝜋2 + 𝑙𝑛2(%𝑂𝑆)
=

|𝑙𝑛 (
10
100)|

√𝜋2 + 𝑙𝑛2 (
10
100)

= 0.591 

𝜙 = 𝑡𝑎𝑛−1
2𝜁

√−2𝜁2 +√1 + 4𝜁4
= 58.5𝑜 

 

𝑡𝑟 → 𝜔𝑛 → (𝑤𝑖𝑡ℎ𝜁)𝜔𝑐 

𝑡𝑟 ≤
𝜋 − 𝑐𝑜𝑠−1𝜁

𝜔𝑛√1 − 𝜁2
 

𝜔𝑐 ≥ 𝜔𝑛√√1 + 4𝜁4 − 2𝜁2 =
𝜋 − 𝑐𝑜𝑠−1𝜁

𝑡𝑟√1 − 𝜁2
√√1 + 4𝜁4 − 2𝜁2 = 3.94 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  

 

𝑡𝑠 → 𝜔𝑛 → (𝑤𝑖𝑡ℎ𝜁)𝜔𝑐 

𝑡𝑠,5% =
−𝑙𝑛(

5

100
)

𝜔𝑛𝜁
, and 𝜔𝑐 = 𝜔𝑛√√1 + 4𝜁4 − 2𝜁2 

𝜔𝑐 ≥
−𝑙𝑛 (

5
100)

𝑡𝑠,5%𝜁
= √√1 + 4𝜁4 − 2𝜁2 = 2.439 𝑟𝑎𝑑 𝑠𝑒𝑐⁄  

 

To meet rise time and settling time, we select 𝜔𝑐 = 4𝑟𝑎𝑑 𝑠𝑒𝑐⁄ . 

 

PLOT THE BODE DIAGRAM FOR THE UNCOMPENSATED SYSTEM 

The uncompensated system is: 𝐿 = 𝐺𝑐𝐺𝑎𝐺𝑝 = 𝐾𝑐𝐺𝑝, and selecting 𝐾𝑐 = 1.5we get: 𝐿 =
7.5

𝑠(𝑠+1)(0.25𝑠+1)
, which has the Bode diagram below. 
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Figure 81- Bode diagram of the uncompensated system 

The system has phase margin of -9º. Its crossover frequency 𝜔𝑐 = 2.43 𝑟𝑎𝑑 𝑠𝑒𝑐⁄ . Clearly the closed 

loop is unstable. 

 

DESIGN THE LEAD PART, TO ADD THE NEEDED PHASE, AT THE DESIRED FREQUENCY  

One other note on the uncompensated system, is that the phase at the desired frequency (4 rad/sec) is 

-211º, we need to adjust it to become about 58º (to become later the phase margin). 

Thus, the needed phase addition is (-211-(-180+58))=89º, at the frequency 4 rad/sec. 

Known that the lead compnesator of 1 pole and 1 zero can provide phase lead up to 90º, but it is 

recommended to use multiple cascaded compensators to provide such high phase lead, each 

compensator provides 45º. 

For the lead compensator of 𝐺𝑐𝑙𝑒𝑎𝑑 =
1+

𝑠

𝑧𝑑

1+
𝑠

𝑚𝑑𝑧𝑑

, selecting 𝑚𝑑 = 6and 𝑧𝑑 = 1, we get the following 

Bode diagram. 
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Figure 82- Bode diagram of a Lead compensator of md=6 and zd=1 

To adjust the frequency to by 4 rad/sec, we select 𝑧𝑑as follows: 𝑧𝑑 =
𝑑𝑒𝑠𝑖𝑟𝑒𝑑𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦

2.54
=

4

2.54
=

1.5748rad/sec 

For the selected values, The lead compensator becomes 𝐺𝑐𝑙𝑒𝑎𝑑 =
1+

𝑠

𝑧𝑑

1+
𝑠

𝑚𝑑𝑧𝑑

, which has the following 

Bode plot. 

 

Figure 83- Bode diagram of the 2 cascaeded Lead compensators 

Applying this to the uncompensated system we get: 
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Figure 84- Bode plots of the system compensated with 2 cascaded lead compensators, and the uncompensated system 

The phase of lead compensated system was improved, but the gain was increased too, which increased 

the crossover frequency to 7.12 rad/sec, which is a lot more that needed. Moreover, the phase at the 

desired frequency, is -120º, which is almost as needed. 

The next step is to attenuate the gain to reduce the crossover frequency 𝜔𝑐. This can not be done by 

reducing 𝐾𝑐, since it is already at its limit to meet steady state requirements.  

 

- Design the Lag part, to reduce the gain, in order to adjust the frequency𝜔𝑐to become as required. 

 

The Lag part is given by:𝐺𝑙𝑎𝑔 =
1+

𝑠

𝑚𝑖𝑧𝑖

1+
𝑠

𝑧𝑖

, selecting 𝑧𝑖to be at a small frequency, 𝑧𝑖 = 0.0003rad/sec, a 

very small frequency since we are not interested in the phase lag, and 𝑚𝑖 = 2, to obtain attenuation 

of about -6dB at frequencies higher that the selected, its Bode diagram is shown below. 
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Figure 85- Bode diagram of the selected Lag compensator 

By applying this compensator to the lead compensated system, we obtain a system with the following 

Bode diagram. 

 

Figure 86- Bode diagram of the uncompensated system, the lead compensated system, and the Lead-Lag compensated system 

This shows that the specifications in the frequency domain are satisfied. Recall that 𝐺𝑐is in the form: 

𝐺𝑐 = 𝐾𝑐
1+

𝑠

𝑧𝑑

1+
𝑠

𝑚𝑑𝑧𝑑

1+
𝑠

𝑧𝑑

1+
𝑠

𝑚𝑑𝑧𝑑

1+
𝑠

𝑚𝑖𝑧𝑖

1+
𝑠

𝑧𝑖

. 

To verify that the transient requirements are met, we plot the output response to a step input. 
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Figure 87- Step response of the Lead-Lag compensated System 

Rise time: 𝑡𝑟 = 0.494𝑠 ≤ 0.5𝑠(from 0 to 100%) 

Settling time: 𝑡𝑠,5% = 1.2𝑠 ≤ 1.5𝑠 

Overshoot: %𝑂𝑆 = 8.6% ≤ 10% 

Transient requirements are satisfied. 

To check the steady state requirements, we can construct a Simulink model representing the feedback 

system, we apply the specified inputs and check the proper outputs. 

Steady State error for a unitary step input reference “r” |𝑒𝑟
∞| = 0: 

 

Figure 88- Simulink representation of the feedback system, evaluating output error for a step reference 

The following figure shows the Simulink representation of the feedback system. 
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A “Step” block is connected to the reference input signal, and a “Scope” block is connected to the 

error signal. The output is plotted in the scope: 

 

 

Figure 89- Output steady state error for a step reference 

The 1st steady state requirement is satisfied. 

 

Steady State error in the presence of 𝑑𝑝: |𝑦𝑑𝑎
∞ | ≤ 1.5 ∗ 10−3, 𝑑𝑝(𝑡) = 𝐷𝑝0𝑡; |𝐷𝑎0| ≤ 5 ∗ 10−3 

 

Figure 90- Simulink representation of the feedback system, disturbance error evaluation 

 

A “Ramp” block is placed with the specified slope, and a “Scope” block is connected to the output 

signal. The reference signal was set to 0. The output is plotted in the scope block: 
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Figure 91- Output error for a ramp disturbance 

|𝑦𝑑𝑎
∞ | = 1.33 ∗ 10−3 ≤ 1.5 ∗ 10−3, the 2nd steady state requirement is also satisfied. 

 

MATLAB Code 
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USEFUL CONCEPTS IN PROBABILITY THEORY 

 
The following chapter wants to introduce in a non-rigorous way some concepts that are useful in the 

framework of the stochastic signals, which are largely used to model noise realizations in a 

dynamical system. 

RANDOM VARIABLES 

 

Informally speaking, a random variable is a function that grants us the possibility to induce measure 

of probability on a measurable space. In other words, it allows us to have information about the 

probabilistic properties of a random quantity. For example, can tell us what is the probability that a 

particular signal takes some values at a given time. In general, a random variable can be a one-

dimensional or multi-dimensional, depending on the aspects of the random phenomenon that we 

want to study in a probabilistic way.  

We will manage only one-dimensional random variable, associated to the value that a one-

dimensional random signal can assume at given time.  

Furthermore, a random variable can be distinguished between: 

 Discrete random variable 

 Continuous random variable 

In the first case, the values that the random variable can assume belongs to a numerable set, while in 

the second, the values belongs to a non-numerable set.  

A random variable is completely described by means of its probability distribution function and its 

probability density function.  

PROBABILITY DISTRIBUTION FUNCTION 

 

The probability distribution function is a real function of real argument that measures the probability 

that occurs for the related random variable to assume values that are smaller or equal to its 

argument. For example, given a random variable 𝑋 and the related distribution function 𝐷𝑋(𝑥
∗), we 

have that:   

 

𝐷𝑋(𝑥
∗) = 𝛾 

 

And the value 𝛾 is the probability that the random variable 𝑋 assumes values 𝑥 that are equal or less 

than 𝑥∗: 

𝛾 = Pr {𝑋 ≤ 𝑥∗} 

Such a function must satisfy the following properties: 

 𝐷𝑋(𝑥) ≥ 0  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑥  

 𝐷𝑋(𝑥) is a monotonic non-decreasing function 
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 lim
𝜀→0+

𝐷𝑋(𝑥 + 𝜀) = 𝐷𝑋(𝑥); that is, the distribution function is always a continuous function 

from the right 

 lim
𝑥→−∞

𝐷𝑋(𝑥) = 0; the probability must decrease to zero as the argument goes to minus infinity 

 lim
𝑥→∞

𝐷𝑋(𝑥) = 1; the probability for the random variable to assume values that are less than 

infinity must always be 1 (certain event) 

 

This function represents a possible form for the distribution function; the independent variable 

𝑥 represents the values that the random variable 𝑋 could assume; given a particular 𝑥∗, the value of 

the function is the probability to have 𝑋 ≤ 𝑥∗ 

PROBABILITY DENSITY FUNCTION  

 

We also define the probability density function (PDF) as the derivative of the probability 

distribution function: 

𝑝𝑋(𝑥) =
𝑑𝐷𝑋(𝑥)

𝑑𝑥
 

The reason for which the PDF is fundamental for the probabilistic characterization of the random 

variable is that its integral between two values gives back the probability for the random variable to 

assume the values that are inside the integration interval; this is true because the integral of the PDF 

is the probability distribution function, and then: 

∫ 𝑝𝑋

𝑏

𝑎

(𝑥)𝑑𝑥 = 𝐷𝑋(𝑏) − 𝐷𝑋(𝑎) 

The last expressions indicates the probability for 𝑋 to be smaller than b and greater than a, that is: 
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∫ 𝑝𝑋

𝑏

𝑎

(𝑥)𝑑𝑥 = Pr {𝑎 ≤ 𝑋 ≤ 𝑏} 

The PDF must satisfy the following properties: 

 𝑝𝑋(𝑥) ≥ 0 𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑥 

 ∫ 𝑝𝑋
∞

−∞
(𝑥)𝑑𝑥 = 1 

The first property derives from the fact that the function represents the probability of an event and so 

cannot be negative; the seconds only reflects the fact that the probability that 𝑋 assumes one value 

among all the possible values is equal to one, that is a certain event. 

Note that the probability for a 𝑋 variable to assume precisely a given real number is zero since it 

corresponds to the integral over a set of dimension zero. 

 

In the graph is reported the PDF related to the distribution function of the previous paragraph. 

EXPECTED VALUES AND MOMENTA  

We now define some quantities that are useful to have a characterization of a given random 

variable. 

Given a random variable 𝑋 and the assigned PDF 𝑝𝑋(𝑥), we define:  

 

Expected value with respect to 𝐟(𝐱).  
Given the function 𝑓(𝑥), the expected value with respect to it is defined as: 

𝐸{𝑓(𝑥)} = ∫ 𝑓(𝑥)𝑝𝑋

∞

−∞

(𝑥)𝑑𝑥 
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It associates the function 𝑓(𝑥) to a number, given by the integral. The expected value is a linear 

operator, since it maintains the integral linear properties.  

Among all the possible 𝑓(𝑥) the function class: 

𝑓(𝑥) = 𝑥𝑛 

Assumes particular importance and the relative expected values are called momenta of order n.  

In the following we list the most used expected values and their basilar interpretation:  

 

 For 𝑓(𝑥) = 𝑥  the expected value is simply called expected value and is the value that most 

probably the random variable will assume. It coincides with the ‘barycenter’ of the PDF and 

is indicated with the symbol 𝑚𝑋  

 For  𝑓(𝑥) = 𝑥2 we have the quadratic expected value , 𝑚𝑋
(2)

 

 For 𝑓(𝑥) = (𝑥 − 𝑚𝑋)
2 the expected value is called variance and it indicates how much the 

PDF is spread around its mean values, that is, how much the values that the random variable 

assumes are different from the expected value; is commonly denoted as 𝜎2 . Its square root is 

called standard deviation. 

GAUSSIAN (NORMAL) PROBABILITY DENSITY FUNCTION 

 

The Gaussian PDF is maybe the most exploited representation of random variables. Its expression is 

the following: 

𝑝𝑋(𝑥) =
1

√2𝜋𝜎2
𝑒
−(
(𝑥−𝑚𝑋)

2

2𝜎2
)
 

 

where the symbols represents the variance and the expected value of the PDF itself; since the Gaussian 

PDF is univocally determined when those two values are known, one can indicate it also with the 

expression 𝑁(𝑚𝑋 , 𝜎
2).   

The Gaussian PDF has many advantages, that are maintained (or simply manageable) when it 

undergoes linear time invariant transformations. Its intensive use is also justified by important 

theoretical results, such as the Central limit theorem.  

 

 FURTHER ARGUMENTS 

 

Many other concepts related to probability and statistics are useful in the dynamical system theory, 

in particular in the probabilistic framework  identification of the systems the concepts of stochastic 

processes and multidimensional random variables are heavily exploited. Even if the main qualities 

related to the single random variable are still valid for a multidimensional random variable, their 

mathematical representations are not trivial (covariance matrix is an example of this fact). 

Useful links: 

 

‘Random signals and noise: a mathematical introduction’, S.Engelberg, CRC Press,2007 

‘Probability, random signals and statistics’, X.R.Li, CRC Press 1999 
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https://engineering.purdue.edu/~ipollak/ee438/FALL04/notes/Section2.1.pdf from Purdue 

University 
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