PhD in Physics

Research Title: Inference and control of dynamic processes on largescale networks: from data to models

Funded by	Politecnico di Torino through the "SmartData@PoliTo" Center
Supervisor	Luca Dall'Asta, DISAT (tutor)
	Giacomo Como, DISMA (co-tutor)
	http://cmartdata.polita.it
Contact	http://smartdata.polito.it luca.dallasta@polito.it
Contact	giacomo.como@polito.it
	<u>giacomo.como@ponto.it</u>
	The research activity will focus on a class of inference problems
	defined starting from data that are the output of dynamical
	processes occurring on networks. An example, already object of
	study in the framework of SmartData@PoliTo and within a
	national research project (PRIN) obtained by the supervisors, is
	the inference of contagion channels between farms starting from
	the partial knowledge of cattle movements and epidemiological
	data provided by the Italian National Bovine Registry. In such a
	context, successful approximate inference methods require to
	include in the probabilistic modeling some partial information of
	the underlying dynamical process. This can be done by means of
Context of the research	advanced mean-field methods developed in the statistical
activity	mechanics of disordered systems. In the same framework, it is
	also possible to develop computational methods for the control of
	dynamical processes (e.g. containment of epidemic spread). In
	addition to the supervisors, the PhD student will be directly
	supported by a team of researchers (Prof. A. Braunstein, Dr. I.
	Biazzo) with years of experience in the field, and will have the
	opportunity to interact with others, belonging to the
	SmartData@PoliTo Center, with interests in similar topics (big data
	analysis, inference and machine learning techniques, control
	methods).
	In this respect, the research activity fits in the SmartData@PoliTo

interdepartmental centre, that brings together competences from

different fields, ranging from modelling to computer

programming, from communications to statistics. The candidate will join this interdisciplinary team of experts and collaborate with them.

Objectives

The main objective of this thesis is the development and improvement of approximate inference methods for dynamical processes on network. The PhD student will become familiar with the most advanced techniques in the field, both from statistical mechanics and machine learning community, and will learn how to deal with large datasets and perform data analysis. Such cutting-edge theoretical notions and computational techniques will be possibly very useful for his/her future career, both in academic research and in the industrial applications of the ICT sector.

Skills and competencies for the development of the activity

The candidate should have a good knowledge of:

- basic theoretical and algorithmic methods in approximate inference (e.g. mean-field variational methods);
- statistical physics of disordered systems and stochastic processes;
- basic machine learning techniques (desirable but not mandatory);
- Python, C++ or Julia languages.

A strong, genuine interest in data analysis is welcome.