PhD in Materials Science and Technolgy

Research Title: Development and optimization of electro-catalysts for CO₂ valorisation

Fabrizio Pirri (<u>fabrizio.pirri@iit.it</u> - <u>fabrizio.pirri@polito.it</u>) POLITECNICO DI TORINO Supervisor Angelica Chiodoni (<u>angelica.chiodoni@iit.it</u>)		
ISTITUTO ITALIANO DI TECNOLOGIA	Supervisor	POLITECNICO DI TORINO Angelica Chiodoni (angelica.chiodoni@iit.it)

	CSFT@POLITO
	https://www.iit.it/centers/csft-polito www.polito.it/micronanotech
Contact	angelica.chiodoni@iit.it - fabrizio.pirri@iit.it

Context of the research activity

Funded by

Anthropogenic CO2 emissions are associated for about twothirds with the electricity, heat generation, and transport sectors; coal is the main fossil fuel responsible for carbon dioxide emission.

Istituto Italiano di Tecnologia

Converting CO2 into valuable products for chemical or energy applications through the use of renewable energy sources, in particular photovoltaic, is a relevant opportunity to introduce renewable energies into the chemical and energy chains, thus realizing efficient resources exploitation, and to tackle concerns about global warming and climate change.

 ${\rm CO_2}$ can be utilized as a ready-to-use raw material to obtain CO (carbon monoxide), CH4 (methane), CH3OH (methanol), HCOOH (formic acid) or HCHO (formaldehyde), or other added-value products.

Many renewable technologies are commercially available, but there is still the need to develop selective and cost-effective catalysts to promote the CO_2 reduction reaction (CO2RR) and to move the CO_2 exploitation toward an affordable technology.

	The objectives of this PhD are:
Objectives	 Development of novel, selective low-cost, and green catalyst materials for the reduction and conversion of CO2 to added-value products. Among others, electrocatalyst based on transition metal oxides, and organic catalysts, will be considered. Optimization of the synthesis procedure and correlation of the physico-chemical properties of the developed catalysts with the catalytic activity to the desired product.

Skills and competencies for the development of the activity

Students with Physics of Matter, Nanotechnology, Chemistry or Material Sciences backgrounds can be considered suitable for the proposed research activities.